精英家教网 > 高中数学 > 题目详情

【题目】甲参加ABC三个科目的学业水平考试,其考试成绩合格的概率如下表,假设三个科目的考试甲是否成绩合格相互独立.

科目A

科目B

科目C

(I)求甲至少有一个科目考试成绩合格的概率;

(Ⅱ)设甲参加考试成绩合格的科目数量为X,求X的分布列和数学期望.

【答案】(I);(II)见解析.

【解析】试题分析:

(1)利用对立事件可得甲至少有一个科目考试成绩合格的概率是

(2) 依题意X=0,1,2,3.由题意求得分布列可得数学期望为EX=

试题解析:

(I)记“甲至少有一个科目考试成绩合格”为事件M

P)=(1-)×(1-)×(1-)=

所以PM)=1-P)=

(II)依题意X=0,1,2,3.

PX=0)=(1-)×(1-)×(1-)=

PX=1)=×(1-)×(1-)+(1-)××(1-)+(1-)×(1-)×==

PX=3)=××==

PX=2)=1-PX=0)-PX=1)-PX=3)=

所以,随机变量X的分布列为:

X

0

1

2

3

P

EX=0×+1×+2×+3×=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合其中,集合.

(1)若,求实数的取值范围;

(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线的焦点为,抛物线上一定点

1)求抛物线的方程及准线的方程;

2)过焦点的直线(不经过点)与抛物线交于两点,与准线交于点,记的斜率分别为,问是否存在常数,使得成立?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数 的图象如图

给出下列四个命题:

①方程有且仅有个根;②方程有且仅有个根;

③方程有且仅有个根;④方程有且仅有个根;

其中正确命题的序号是( )

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据市场分析,南雄市精细化工园某公司生产一种化工产品,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x()的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.写出月总成本y(万元)关于月产量x()的函数关系.已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且

(1)判断函数的奇偶性

(2) 判断函数(1,+)上的单调性,并用定义证明你的结论;

(3)求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

周销售量(单位:吨)

2

3

4

频数

20

50

30

根据上面统计结果,求周销售量分别为2,3吨和4吨的频率;

已知每吨该商品的销售利润为2千元,表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中有7个大小、形状相同的小球,6个白球1个红球.现任取1个,若为红球就停止,若为白球就放回,搅拌均匀后再接着取.试设计一个模拟试验,计算恰好第三次摸到红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届安徽百校论坛高三文上学期联考二】已知函数.

(1)若恒成立,求实数的取值范围;

(2)是否存在整数,使得函数在区间上存在极小值,若存在,求出所有整数的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案