ÒÑÖªÊýÁÐ{an}ÓëÊýÁÐ{bn}£¨n¡ÊN*£¬n¡Ý1£©Âú×㣺¢Ùa1£¼0£¬b1£¾0£»¢Úµ±k¡Ý2ʱ£¬akÓëbkÂú×ãÈçÏÂÌõ¼þ£º
µ±
ak-1+bk-1
2
¡Ý0ʱ£¬ak=ak-1£¬£¬bk=
ak-1+bk-1
2
£»µ±
ak-1+bk-1
2
£¼0ʱ£¬ak=
ak-1+bk-1
2
£¬bk=bk-1£®
Ç󣺣¨1£©ÓÃa1£¬b1±íʾbn-an£»
£¨2£©µ±b1£¾b2£¾¡­£¾bn£¨n¡Ý2£©Ê±£¬ÓÃa1£¬b1±íʾbk£®£¨k=1£¬2£¬¡­n£©
£¨3£©µ±n£¨n¡Ý2£¬n¡ÊN*£©ÊÇÂú×ãb1£¾b2£¾¡­£¾bn£¨n¡Ý2£©µÄ×î´óÕûÊýʱ£¬ÓÃa1£¬b1±íʾnÂú×ãµÄÌõ¼þ£®
·ÖÎö£º£¨1£©Í¨¹ý·ÖÀàÌÖÂÛ¿ÉÖª£¬ËùÒÔÎÞÂÛÄÄÖÖÇé¿ö£¬¶¼ÓÐbk-ak=
bk-1-ak-1
2
£¬´Ó¶ø¿É»ñµÃÊýÁÐbn-anΪµÈ±ÈÊýÁнø¶ø¿É»ñµÃÎÊÌâµÄ½â´ð£»
£¨2£©½áºÏÌõ¼þ¾­·ÖÀàÌÖÂÛ¿ÉÖª
ak-1+bk-1
2
¡Ý0£¬¶ÔÓÚ2¡Ük¡Ün£¬ak=ak-1£¬bk=
ak-1+bk-1
2
´Ó¶øan=an-1¨Ta1£®ÓÉ£¨1£©¼´¿É»ñµÃÎÊÌâµÄ½áÂÛ£®
£¨3£©ÓÉÌâÒâ·ÖÎöÒ×Öª
an+bn
2
=a1+(b1-a1)•(
1
2
)
n
£¬¾­·ÖÀàÌÖÂÛÒ×Öª
b1-a1
-a1
£¼2n
½ø¶ø¼´¿É»ñµÃÎÊÌâ½â´ð£®
½â´ð£º½â£º£¨1£©µ±
ak-1+bk-1
2
¡Ý0ʱ£¬bk-ak=
ak-1+bk-1
2
-ak-1=
bk-1-ak-1
2
£»
µ±
ak-1+bk-1
2
£¼0ʱ£¬bk-ak=bk-1-
ak-1+bk-1
2
=
bk-1-ak-1
2

ËùÒÔÎÞÂÛÄÄÖÖÇé¿ö£¬¶¼ÓÐbk-ak=
bk-1-ak-1
2

Òò´Ë£¬ÊýÁÐ{bk-ak}ÊÇÊ×ÏàΪb1-a1£¬¹«±ÈΪ
1
2
µÄµÈ±ÈÊýÁУ¬
¡àbn-an=(b1-a1)•(
1
2
)
n-1
£®
£¨2£©ÓÉb1£¾b2£¾£¾bn£¨n¡Ý2£©Ê±£¬bk¡Ùbk-1£¨2¡Ük¡Ün£©
ÓÉ¢Ú¿ÉÖª£¬
ak-1+bk-1
2
£¼0
²»³ÉÁ¢£¬
ËùÒÔ
ak-1+bk-1
2
¡Ý0£¬¶ÔÓÚ2¡Ük¡Ün£¬ak=ak-1£¬bk=
ak-1+bk-1
2

ÓÚÊÇan=an-1¨Ta1
ÓÉ£¨1£©¿ÉµÃ£¬bk=a1+£¨b1-a1£©•(
1
2
)
n-1
(k=2£¬3£¬£¬n)
£®
£¨3£©ÓÉb1£¾b2£¾£¾bn£¨n¡Ý2£©Öª
an=a1£¬bn=a1+(b1-a1)•(
1
2
)n-1

¡à
an+bn
2
=
1
2
{a1+[a1+(b1-a1)•(
1
2
)
n-1
]}=a1+(b1-a1)•(
1
2
)n

Èô
an+bn
2
¡Ý0£¬Ôòbn=
an+bn
2

bn+1-bn=[a1+(b1-a1)•(
1
2
)
n
]-[a1+(b1-a1)•(
1
2
)
n-1
]

=-(b1-a1)•(
1
2
)n£¼0£¬(¡ßb1-a1£¾0)

¡àbn£¾bn+1ÕâÓënÊÇÂú×ãb1£¾b2£¾b3£¾bn£¨n¡Ý2£©µÄ×î´óÕûÊýÏàì¶Ü
¡ànÊÇÂú×ã
an+bn
2
£¼0µÄ×îСÕûÊýÓÉ
an+bn
2
£¼0£¬µÃa1+(b1-a1)•(
1
2
)n£¼0

µÃ
a1+b1
2n
£¼-a£¬µÃ
b1-a1
-a1
£¼2n

¡àlog2
a1-b1
a1
£¼n

Òò¶ønÊÇÂú×ãlog2
a1-b1
a1
£¼nµÄ×îСÕûÊý£®
µãÆÀ£º±¾Ì⿼²éµÄÊÇÊýÁÐÓë²»µÈʽµÄ×ÛºÏÀàÎÊÌ⣮ÔÚ½â´ðµÄ¹ý³Ìµ±Öгä·ÖÌåÏÖÁË·ÖÀàÌÖÂÛµÄ˼Ïë¡¢ÊýÁÐÇóºÍµÄ֪ʶÒÔ¼°ÎÊÌâת»¯µÄ֪ʶ£®ÖµµÃͬѧÃÇÌå»áºÍ·´Ë¼£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=5£¬Ç°nÏîºÍΪSn£¬ÇÒSn+1=2Sn+n+5£¨n¡ÊN*£©
£¨I£©Ö¤Ã÷ÊýÁÐ{an+1}ÊǵȱÈÊýÁУ»
£¨II£©Áîf£¨x£©=a1x+a2x2+¡­+anxn£¬Çóº¯Êýf£¨x£©ÔÚµãx=1´¦µÄµ¼Êýf'£¨1£©²¢±È½Ï2f'£¨1£©Óë23n2-13nµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}ÖУ¬Ç°nÏîºÍΪSn£¬µã£¨an+1£¬Sn+1£©ÔÚÖ±Ïßy=4x-2£¬ÆäÖÐn=1£¬2£¬3¡­£¬
£¨¢ñ£©Éèbn=an+1-2an£¬ÇÒa1=1£¬ÇóÖ¤ÊýÁÐ{bn}ÊǵȱÈÊýÁУ»
£¨¢ò£©Áîf£¨x£©=b1x+b2x2+¡­+bnxn£¬Çóº¯Êýf£¨x£©ÔÚµãx=1´¦µÄµ¼Êýf¡ä£¨1£©²¢±È½Ïf¡ä£¨1£©Óë6n2-3nµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÄÚ½­¶þÄ££©ÒÑÖªÊýÁÐ{an} µÄÊ×Ïîa1=5£¬Ç°nÏîºÍΪSn£¬ÇÒSn+1=Sn+n+5£¨n¡ÊN*£©£®
£¨¢ñ£©Ö¤Ã÷ÊýÁÐ{an+1}ÊǵȱÈÊýÁУ»
£¨¢ò£©Áîf£¨x£©=a1x+a2x2+¡­+anxn£¬Çóº¯Êýf£¨x£©ÔÚµãx=1´¦µÄµ¼Êýf¡ä£¨1£©²¢±È½Ï2f¡ä£¨1£©Óë23n2-13nµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¹ãÖݶþÄ££©ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬¶ÔÈÎÒân¡ÊN*£¬¶¼ÓÐan£¾0ÇÒSn=
(an-1)(an+2)
2
£¬Áîbn=
lnan+1
lnan
£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Ê¹³Ë»ýb1•b2¡­bkΪÕûÊýµÄk£¨k¡ÊN*£©½Ð¡°ÁúÊý¡±£¬ÇóÇø¼ä[1£¬2012]ÄÚµÄËùÓС°ÁúÊý¡±Ö®ºÍ£»
£¨3£©ÅжÏbnÓëbn+1µÄ´óС¹ØÏµ£¬²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}£ºa1a2£¬¡­£¬an£¨0¡Üa1¡Üa2¡­¡Üan£©£¬n¡Ý3ʱ¾ßÓÐÐÔÖÊP£º¶ÔÈÎÒâµÄi£¬j£¨1¡Üi¡Üj¡Ün£©£¬aj+aiÓëaj-aiÁ½ÊýÖÐÖÁÉÙÓÐÒ»¸öÊǸÃÊýÁÐÖеÄÒ»ÏÏÖ¸ø³öÒÔÏÂËĸöÃüÌ⣺
¢ÙÊýÁÐ0£¬1£¬3¾ßÓÐÐÔÖÊP£»         ¢ÚÊýÁÐ0£¬2£¬4£¬6¾ßÓÐÐÔÖÊP£»
¢ÛÊýÁÐ{an}¾ßÓÐÐÔÖÊP£¬Ôòa1=0£»    ¢ÜÈôÊýÁÐa1£¬a2£¬a3£¨0¡Üa1£¼a2£¼a3£©¾ßÓÐÐÔÖÊP£¬Ôòa1+a3=2a2£®
ÆäÖÐÕæÃüÌâµÄÐòºÅΪ
¢Ú¢Û¢Ü
¢Ú¢Û¢Ü
£®£¨ËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ¶¼Ð´ÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸