已知数列{an}中,前n项和为Sn,点(an+1,Sn+1)在直线y=4x-2,其中n=1,2,3…,
(Ⅰ)设bn=an+1-2an,且a1=1,求证数列{bn}是等比数列;
(Ⅱ)令f(x)=b1x+b2x2+…+bnxn,求函数f(x)在点x=1处的导数f′(1)并比较f′(1)与6n2-3n的大小.
分析:(I)由点(an+1,Sn+1)在直线y=4x-2上,知Sn+1=4an+2.所以an+2=4an+1-4an.再由bn=an+1-2an,知bn+1=2bn.上此知数列{bn}是首项为3,公比为2的等比数列.
(II)由bn=3•2n-1,f(x)=b1x+b2x2+…+bnxn,知f′(x)=b1+2b2x+…+nbnxn-1.从而f′(1)=b1+2b2+…+nbn=3(1+2•2+3•22+…+n•3•2n-1).Tn=1+2•2+3•22+…+n•2n-1,由错位相减法知Tn=(n-1)•2n+1.f′(1)=3(n-1)•2n+3.由f′(1)-(6n2-3n)=3[(n-1)•2n+1-2n2+n]能推导出f′(1)>6n2-3n.
解答:解:(I)由已知点(a
n+1,S
n+1)在直线y=4x-2上.
∴S
n+1=4(a
n+1)-2.
即S
n+1=4a
n+2.(n=1,2,3,)
∴S
n+2=4a
n+1+2.
两式相减,得S
n+2-S
n+1=4a
n+1-4a
n.
即a
n+2=4a
n+1-4a
n.(3分)
a
n+2-2a
n+1=2(a
n+1-2a
n).
∵b
n=a
n+1-2a
n,(n=1,2,3,)
∴b
n+1=2b
n.
由S
2=a
1+a
2=4a
1+2,a
1=1.
解得a
2=5,b
1=a
2-2a
1=3.
∴数列{b
n}是首项为3,公式为2的等比数列.(6分)
(II)由(I)知b
n=3•2
n-1,
∵f(x)=b
1x+b
2x
2+…+b
nx
n,
∴f′(x)=b
1+2b
2x+…+nb
nx
n-1.
从而f′(1)=b
1+2b
2+…+nb
n=3+2•3•2+3•3•2
2+…+n•3•2
n-1=3(1+2•2+3•2
2+…+n•3•2
n-1)(8分)
设T
n=1+2•2+3•2
2+…+n•2
n-1,
2T
n=2+2•2
2+3•2
3+…+(n-1)•2
n-1+n•2
n.
两式相减,得-T
n=1+2+2
2+2
3+…+2
n-1-n•2
n=
-n•2n.
∴T
n=(n-1)•2
n+1.
∴f′(1)=3(n-1)•2
n+3.(11分)
由于f′(1)-(6n
2-3n)=3[(n-1)•2
n+1-2n
2+n]
=3(n-1)[2
n-(2n+1)].
设g(n)=f′(1)-(6n
2-3n).
当n=1时,g(1)=0,∴f′(1)=6n
2-3n;
当n=2时,g(2)=-3<0,∴f′(1)<6n
2-3n;
当n≥3时,n-1>0,又2
n=(1+1)
n=C
n0+C
n1+…+C
nn-1+C
nn≥2n+2>2n+1,
∴(n-1)[2
n-(2n+1)]>0,即g(n)>0,从而f′(1)>6n
2-3n.(14分)
点评:本题考查数列的性质和应用,解题时要注意不等式的合理运用.