精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a2=a(a为非零常数),其前n项和Sn满足:Sn=
n(an-a1)
2
(n∈N*)

(1)求数列{an}的通项公式;
(2)若a=2,且
1
4
am2-Sn=11,求m、n的值;
(3)是否存在实数a、b,使得对任意正整数p,数列{an}中满足an+b≤p的最大项恰为第3p-2项?若存在,分别求出a与b的取值范围;若不存在,请说明理由.
(1)由已知,得a1=S1=
(a1-a1)
2
=0,∴Sn=
nan
2

则有Sn+1=
(n+1)an+1
2

∴2(Sn+1-Sn)=(n+1)an+1-nan,即(n-1)an+1=nan  n∈N*,
∴nan+2=(n+1)an+1
两式相减得,2an+1=an+2+an   n∈N*,
即an+1-an+1=an+1-an    n∈N*,
故数列{an}是等差数列.
又a1=0,a2=a,∴an=(n-1)a.
(2)若a=2,则an=2(n-1),∴Sn=n(n-1).
1
4
a2m
-Sn=11
,得n2-n+11=(m-1)2,即4(m-1)2-(2n-1)2=43,
∴(2m+2n-3)(2m-2n-1)=43.
∵43是质数,2m+2n-3>2m-2n-1,2m+2n-3>0,
2m-2n-1=1
2m+2n-3=43
,解得m=12,n=11.
(3)由an+b≤p,得a(n-1)+b≤p.
若a<0,则n≥
p-b
a
+1,不合题意,舍去;     
若a>0,则n≤
p-b
a
+1.∵不等式an+b≤p成立的最大正整数解为3p-2,
∴3p-2≤
p-b
a
+1<3p-1,
即2a-b<(3a-1)p≤3a-b,对任意正整数p都成立.
∴3a-1=0,解得a=
1
3

此时,
2
3
-b<0≤1-b,解得
2
3
<b≤1.
故存在实数a、b满足条件,a与b的取值范围是a=
1
3
2
3
<b≤1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案