精英家教网 > 高中数学 > 题目详情

如图,椭圆数学公式的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为8,且△AF1F2面积最大时,△AF1F2为正三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:①以PQ为直径的圆与x轴的位置关系?
②在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标;若不存在,说明理由.

解:(1)∵△ABF2的周长为8,∴4a=8,∴a=2.
又当△AF1F2面积最大时为正三角形,∴A(0,b),a=2c,∴c=1,b2=3,
∴椭圆E的方程为
(2)①由,得方程(4k2+3)x2+8kmx+4m2-12=0
由直线与椭圆相切得m≠0,△=0,?4k2-m2+3=0.
求得,Q(4,4k+m),PQ中点到x轴距离
所以圆与x轴相交.
②假设平面内存在定点M满足条件,由对称性知点M在x轴上,设点M坐标为M(x1,0),
,得
,即x1=1.
所以定点为M(1,0).
分析:(1)利用椭圆的定义、等边三角形的性质即可得出;
(2)①判断圆心到x轴的距离与半径的大小关系即可得出;
②假设平面内存在定点M满足条件,则由对称性知点M在x轴上,再利用直径所对的圆周角是直角即可求出.
点评:熟练掌握椭圆的定义、等边三角形的性质、直线与圆的位置关系的判断、圆的对称性、直径所对的圆周角是直角是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分16分)

如图,椭圆的左焦点为,上顶点为,过点作直线的垂线分别交椭圆、轴于两点.⑴若,求实数的值;

⑵设点的外接圆上的任意一点,

的面积最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年广东省“十二校”高三第2次联考文科数学试卷(解析版) 题型:解答题

如图,椭圆的左焦点为,右焦点为,过的直线交椭圆于两点, 的周长为8,且面积最大时,为正三角形

1)求椭圆的方程

2)设动直线与椭圆有且只有一个公共点,且与直线于点,证明:点在以为直径的圆上.

 

查看答案和解析>>

科目:高中数学 来源:2014届四川成都六校协作体高二下学期期中考试理科数学试卷(解析版) 题型:解答题

如图,椭圆的左焦点为,过点的直线交椭圆于两点.当直线经过椭圆的一个顶点时,其倾斜角恰为

(Ⅰ)求该椭圆的离心率;

(Ⅱ)设线段的中点为的中垂线与轴和轴分别交于两点,

记△的面积为,△为原点)的面积为,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省苏州市高三(上)期末数学试卷(解析版) 题型:解答题

如图,椭圆的左焦点为F,上顶点为A,过点A作直线AF的垂线分别交椭圆、x轴于B,C两点.
(1)若,求实数λ的值;
(2)设点P为△ACF的外接圆上的任意一点,当△PAB的面积最大时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源:2013年上海市崇明县高考数学一模试卷(文科)(解析版) 题型:解答题

如图,椭圆的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为8,且△AF1F2面积最大时,△AF1F2为正三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:①以PQ为直径的圆与x轴的位置关系?
②在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案