精英家教网 > 高中数学 > 题目详情
精英家教网
如图所示,四棱锥P-ABCD的底面是矩形,△PAB是等边三角形,侧面PAB⊥底面ABCD.
(Ⅰ)求证:平面PAB⊥平面PBC;
(Ⅱ)求证:BC∥平面PAD;
(Ⅲ)若平面PAD∩平面PBC=直线l,求证:直线l⊥平面PAB.
分析:(Ⅰ)由题意可得:BC⊥平面PAB,所以根据面面垂直的偶的定理可得:平面PBC⊥平面PAB.
(Ⅱ)根据题意并且结合线面平行的判定定理可得:BC∥平面PAD.
(Ⅲ) 由(II)可得:BC∥平面PAD,并且BC?平面PBC,平面PAD∩平面PBC=直线l,所以BC∥l,进而得到线面垂直.
解答:证明:(Ⅰ)由题意可得:
平面PAB⊥平面ABCD
平面PAB∩平面ABCD=AB
矩形ABCD?AB⊥BC
BC?平面ABCD

所以BC⊥平面PAB.
又因为BC?平面PBC,
所以平面PBC⊥平面PAB.
(Ⅱ)根据题意可得:
矩形ABCD?BC∥AD
BC?平面PAD
AD?平面PAD

所以根据线面平行的判定定理可得:BC∥平面PAD.
(Ⅲ) 由(II)可得:BC∥平面PAD,并且BC?平面PBC,平面PAD∩平面PBC=直线l,
所以BC∥l,
又因为BC⊥平面PAB,
所以l⊥平面PAB.
点评:解决此类问题的关键是熟练掌握有关线线、线面、面面垂直与平行的判定定理、性质定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求二面角C-PD-E的大小;
(Ⅲ)求点B到平面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面是一个矩形,AB=3.AD=1.又PA⊥AB,PA=4,
∠PAD=60°.求:
(1)四棱锥P-ABCD的体积.
(2)二面角P-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求线段PD的长;
(2)若PC=
11
R
,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)如图所示,四棱锥P-ABCD中,ABCD为正方形,PA⊥AD,E,F,G分别是线段PA,PD,CD的中点.
求证:
(1)BC∥平面EFG;
(2)平面EFG⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=AD=AB=1.
(1)证明:EB∥平面PAD;
(2)证明:BE⊥平面PDC;
(3)求三棱锥B-PDC的体积V.

查看答案和解析>>

同步练习册答案