精英家教网 > 高中数学 > 题目详情
函数y=f(x)对于x>0有意义,且满足条件f(2)=1,f(xy)=f(x)+f(y),f(x)是增函数.
(1)证明:f(1)=0;
(2)若f(x)+f(x-3)≥2成立,求x的取值范围.
分析:(1)令x=2,y=1,并代入f(xy)=f(x)+f(y),即可求出f(1)的值;
(2)令x=2,y=2,代入求得f(4),结合题意可将f(x)+f(x-3)≥2转化为f(x2-3x)≥f(4),结合函数的单调性与函数的定义域,可得
x>0
x-3>0
x2-3x≥4
,解可得x的值.
解答:解:(1)在f(xy)=f(x)+f(y)中,令x=2,y=1,则f(2×1)=f(2)+f(1),
又由f(2)=1,则f(1)=0;
(2)令x=2,y=2,则f(2×2)=f(4)=f(2)+f(2)=2,
所以f(x)+f(x-3)=f(x2-3x)≥f(4),
又f(x)为增函数
所以
x>0
x-3>0
x2-3x≥4

综上,x≥4.
点评:本题考查抽象函数的应用,解(2)的关键是根据题意,分析出f(4)=2,进而用f(4)替换2,其次要注意函数的定义域.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数y=f(x)对于一切实数x,y,都有f(x+y)=f(x)+f(y),
(1)求f(0)并证明y=f(x)是奇函数;
(2)若f(1)=3,求f(-3).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)对于任意正实数x、y,都有f(xy)=f(x)•f(y),当x>1时,0<f(x)<1,且f(2)=
1
9

(1)求证:f(x)f(
1
x
)=1(x>0)

(2)判断f(x)在(0,+∞)的单调性;并证明;
(3)若f(m)=3,求正实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的个数为(  )
①函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
②函数y=f(x)与函数y=-f(x)的图象关于直线y=0对称;
③函数y=f(x)与函数y=-f(-x)的图象关于坐标原点对称;
④如果函数y=f(x)对于一切x∈R,都有f(a+x)=f(a-x),那么y=f(x)的图象关于直线x=a对称.

查看答案和解析>>

同步练习册答案