精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinx,cosx+sinx)
b
=(2cosx,cosx-sinx)
,x∈R,设函数f(x)=
a
b

(Ⅰ)求函数f(x)的最大值及相应的自变量x的取值集合;
(II)当x0∈(0,
π
8
)
f(x0)=
4
2
5
时,求f(x0+
π
3
)
的值
(Ⅰ)∵
a
=(sinx,cosx+sinx)
b
=(2cosx,cosx-sinx)

f(x)=
a
b
=(sinx,cosx+sinx)•(2cosx,cosx-sinx)=2sinxcosx+cos2x-sin2x(1分)
=sin2x+cos2x(3分)
=
2
sin(2x+
π
4
)
(4分)
∴函数f(x)取得最大值为
2
.(5分)
相应的自变量x的取值集合为{x|x=
π
8
+kπ
(k∈Z)}(7分)
(II)由f(x0)=
4
2
5
2
sin(2x0+
π
4
)=
4
2
5
,即sin(2x0+
π
4
)=
4
5

因为x0∈(0,
π
8
)
,所以2x0+
π
4
∈(
π
4
π
2
)
,从而cos(2x0+
π
4
)=
3
5
(9分)
于是f(x0+
π
3
)
=
2
sin(2x0+
π
4
+
π
3
)=
2
sin[(2x0+
π
4
)+
π
3
]
=
2
sin[(2x0+
π
4
)+
π
3
]=
2
[sin(2x0+
π
4
)cos
π
3
+cos(2x0+
π
4
)sin
π
3
]

=
2
(
4
5
×
1
2
+
3
5
×
3
2
)=
4
2
+3
6
10
(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案