精英家教网 > 高中数学 > 题目详情
19、设曲线S:y=x3-6x2-x+6,S在哪一点处的切线斜率最小?设此点为P(x0,y0)求证:曲线S关于P点中心对称.
分析:欲求S在哪一点处的切线斜率最小,先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率的函数,根据二次函数的最值即可求得斜率的最小值.欲求证:曲线S关于P点中心对称,先看按向量(-2,+12)平移后得到的函数是不是奇函数,如果是奇函数,则问题解决.
解答:证明:y′=3x2-12x-1当x=2时有最小值.故P:(2,-12).
S在(2,-12)处的切线斜率最小,为-13.
又y=(x-2+2)3-6(x-2+2)2-(x-2+2)+6
=(x-2)3-13(x-2)-12
故曲线C的图象按向量(-2,+12)平移后方程为y′=x-13x′为奇数,关于原点对称,
故P(2,-12)为曲线S的对称中心.
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,f(x)取得极小值
π
3
-
3

(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记h(x)=
1
8
[5x-f(x)]
,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+bsinx,当数学公式时,f(x)取得极小值数学公式
(1)求a,b的值;
(2)设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:
①直线l与曲线S相切且至少有两个切点;
②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
试证明:直线l:y=x+2是曲线S:y=ax+bsinx的“上夹线”.
(3)记数学公式,设x1是方程h(x)-x=0的实数根,若对于h(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,问是否存在一个最小的正整数M,使得|h(x3)-h(x2)|≤M恒成立,若存在请求出M的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设曲线S:y=x3-6x2-x+6,S在哪一点处的切线斜率最小?设此点为P(x0,y0)求证:曲线S关于P点中心对称.

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第100-102课时):第十三章 导数-导数的应用(3)(解析版) 题型:解答题

设曲线S:y=x3-6x2-x+6,S在哪一点处的切线斜率最小?设此点为P(x,y)求证:曲线S关于P点中心对称.

查看答案和解析>>

同步练习册答案