精英家教网 > 高中数学 > 题目详情

如图,直角梯形ABCD中,AB∥CD,AB⊥AD,对角线AC⊥BD,且A(0,0),B(4,0)
(1)求点C的轨迹M;
(2)过点B的直线l交轨迹M于E,F两点,求证:AE⊥AF.

解:如图建立坐标系,设C(x,y)(x≠0),
则D(0,y),=(x,y),=(-4,y)∵,?y2=4x(x≠0)
∴所求的轨迹M是除去顶点的抛物线
(2)当直线l垂足x轴时,命题显然处理,当斜率不存在时,设直线l:y=k(x-4)(k≠0)
联立y2=4x?k2x2-(8k2+4)x+16k2=0,;设E(x1,y1),F(x2,y2
则x1+x2=;x1x2=16而y1y2=k2(x1-4)(x2-4)=-16
∴x1x2+y1y2=0,则AE⊥AF
分析:(1)直接设C(x,y)(x≠0),则D(0,y),由AC⊥BD,由斜率之际为-1,或向量的数量积为0,
直接可求得点C的轨迹方程,再由方程确定轨迹即可.
(2)设E(x1,y1),F(x2,y2),AE⊥AF?x1x2+y1y2=0.故只需联力方程、消元、维达定理纠结即可.
点评:本题考查直接法求轨迹方程、直线和抛物线的位置关系问题、考查运算能力和转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2014•宜宾一模)如图,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面积等于△ADC面积的
12
.梯形ABCD所在平面外有一点P,满足PA⊥平面ABCD,PA=AB.
(1)求证:平面PCD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明;若不存在,请说明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州一模)如图,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求证:AF∥平面BDE;
(2)求四面体B-CDE的体积.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省南昌市高三第二次模拟测试理科数学试卷(解析版) 题型:解答题

(本小题满分12分)如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD =2AE =2AB = 4AF= 4,将四边形EFCD沿EF折起使AE=AD.

(1)求证:AF∥平面CBD;

(2)求平面CBD与平面ABFE夹角的余弦值.

 

查看答案和解析>>

科目:高中数学 来源:2013年广东省惠州市高考数学一模试卷(文科)(解析版) 题型:解答题

如图,直角梯形ACDE与等腰直角△ABC所在平面互相垂直,F为BC的中点,∠BAC=∠ACD=90°,AE∥CD,DC=AC=2AE=2
(1)求证:AF∥平面BDE;
(2)求四面体B-CDE的体积.

查看答案和解析>>

科目:高中数学 来源:2012年宁夏银川市贺兰一中高考数学一模试卷(理科)(解析版) 题型:解答题

如图,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC且△ABC的面积等于△ADC面积的.梯形ABCD所在平面外有一点P,满足PA⊥平面ABCD,PA=PB.
(1)求证:平面PCD⊥平面PAC;
(2)侧棱PA上是否存在点E,使得BE∥平面PCD?若存在,指出点E的位置并证明;若不存在,请说明理由.
(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

同步练习册答案