(本小题满分12分)如图:直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别是边AD和BC上的点,且EF∥AB,AD =2AE =2AB = 4AF= 4,将四边形EFCD沿EF折起使AE=AD.
(1)求证:AF∥平面CBD;
(2)求平面CBD与平面ABFE夹角的余弦值.
![]()
(1)见解析 (2) ![]()
【解析】(1)利用直线与平面平行的判定证明线面平行;(2)根据条件建立空间直角坐标系,然后求出两个面的法向量,根据法向量的夹角求出二面角
(1)证明:
,所以延长
会相交,
设
,则
,
,
所以四边形
是平行四边形,
,又
平面![]()
平面
;……………………6分
(2)设
的中点为
,
,则
且
,
又
,
平面
,
,
平面
.………………………………………………………………8分
如图:以点
为原点,过点
且平行于
的直线为
轴,
所在直线为
轴,
所在直线为
轴,建立空间直角坐标系
。则平面
的法向量为
,点
的坐标分别为
,
,
,………………10分
![]()
设平面
的法向量
,则
,
![]()
令
,则
,
,即
,
,
平面
与平面
夹角的余弦值为
.…………………………………12分
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com