精英家教网 > 高中数学 > 题目详情
过抛物线y2=2px(p>0)的对称轴上一点A(a,0)的直线与抛物线相交于M、N两点,自M、N向直线l:x=-a作垂线,垂足分别为M1、N1
(1)当时,求证:AM1⊥AN1
(2)记△AMM1、△AM1N1、△ANN1的面积分别为S1、S2、S3,是否存在λ,使得对任意的a>0,都有S22=λS1S2成立。若存在,求出λ的值;若不存在,说明理由
解:依题意,可设直线MN的方程为,则有

消去x可得
从而有 ①
于是 ②
又由学科网(www.zxxk.com)--国内最大的教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!,可得
 ③
(1)如图,当时,点即为抛物线的焦点,l为其准线
此时,并由①可得


(2)存在,使得对任意的,都有成立,证明如下:
记直线l与x轴的交点为A1,则
于是有




将①、②、③代入上式化简可得

上式恒成立,即对任意成立。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线准线上的射影为C,若
AF
=
FB
BA
BC
=48
,则抛物线的方程为(  )
A、y2=4x
B、y2=8x
C、y2=16x
D、y2=4
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0)作两条直线分别交抛物线于A(x1,y1),B(x2,y2),若PA与PB的斜率存在且倾斜角互补,则
y1+y2y0
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A、B两点,O为抛物线的顶点.则△ABO是一个(  )
A、等边三角形B、直角三角形C、不等边锐角三角形D、钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2px(p>0)的焦点F的直线AB交抛物线于A,B两点,弦AB的中点为M,过M作AB的垂直平分线交x轴于N.
(1)求证:FN=
12
AB

(2)过A,B的抛物线的切线相交于P,求P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)已知过抛物线y2=2px(p>0)的焦点F的直线交抛物线于M、N两点,直线OM、ON(O为坐标原点)分别与准线l:x=-
p
2
相交于P、Q两点,则∠PFQ=(  )

查看答案和解析>>

同步练习册答案