精英家教网 > 高中数学 > 题目详情
已知以坐标轴为对称轴,原点为对称中心的双曲线上的一个点为P(2,3),根据点P还可确定哪几个点在此双曲线上?

解:由双曲线的对称性知,还可确定(2,-3),(-2,3),(-2,-3)三个点在双曲线上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科做(1)(2)(4),理科全做)
已知过抛物线C1:y2=2px(p>0)焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点 
(1)证明:y1y2=-p2且(y1+y22=2p(x1+x2-p);
(2)点Q为线段AB的中点,求点Q的轨迹方程;
(3)若x1=1,x2=4,以坐标轴为对称轴的椭圆或双曲线C2过A、B两点,求曲线C1和C2的方程;
(4)在(3)的条件下,若曲线C2的两焦点分别为F1、F2,线段AB上有两点C(x3,y3),D(x4,y4)(x3<x4),满足:①SF1F2A-SF1F2C=SF1F2D-SF1F2B,②AB=3CD.在线段F1 F2上是否存在一点P,使PD=
11
,若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为4和2,过P点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求满足下列条件的椭圆的标准方程.
(1)已知椭圆的焦点在X轴上,长轴长是短轴长的3倍,且过点A(3,0).
(2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(
6
,1)
P2(-
3
,-
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•福建模拟)已知中心的坐标原点,以坐标轴为对称轴的双曲线C过点Q(2,
3
3
)
,且点Q在x轴上的射影恰为该双曲线的一个焦点F1
(Ⅰ)求双曲线C的方程;
(Ⅱ)命题:“过椭圆
x2
25
+
y2
16
=1
的一个焦点F作与x轴不垂直的任意直线l”交椭圆于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB|
|FM|
为定值,且定值是
10
3
”.命题中涉及了这么几个要素:给定的圆锥曲线E,过该圆锥曲线焦点F的弦AB,AB的垂直平分线与焦点所在的对称轴的交点M,AB的长度与F、M两点间距离的比值.试类比上述命题,写出一个关于抛物线C的类似的正确命题,并加以证明
(Ⅲ)试推广(Ⅱ)中的命题,写出关于圆锥曲线(椭圆、双曲线、抛物线)的统一的一般性命题(不必证明).

查看答案和解析>>

同步练习册答案