精英家教网 > 高中数学 > 题目详情

【题目】已知全集U=R,集合A={x|y= },集合B={x|0<x<2},则(UA)∪B等于

【答案】(0,+∞)
【解析】解:对于集合A:要使由意义,则1﹣x≥0,解得x≤1,∴A=(﹣∞,1],∴CUA=(1,+∞).

对于集合B={x|0<x<2}=(0,2).

∴(UA)∪B=(1,+∞)∪(0,2)=(0,+∞).

所以答案是:(0,+∞).

【考点精析】通过灵活运用交、并、补集的混合运算,掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=x,过点M(2,0)作直线l:x=ny+2与抛物线C交于A,B两点,点N是定直线x=﹣2上的任意一点,分别记直线AN,MN,BN的斜率为k1 , k2 , k3
(1)求 的值;
(2)试探求k1 , k2 , k3之间的关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若正数x,y满足x+3y=5xy,求:
(1)3x+4y的最小值;
(2)求xy的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,,且xyz,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且abc,在不同的方案中,最低的总费用(单位:元)是()
A.ax+by+cz
B.az+by+cx
C.ay+bz+cx
D.ay+bx+cz

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四图,都是同一坐标系中三次函数及其导函数的图象,其中一定正确的序号是(
A.①②
B.①③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga|x+1|(a>0且a≠1),当x∈(0,1)时,恒有f(x)<0成立,则函数g(x)=loga(﹣ x2+ax)的单调递减区间是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1 , F2分别为椭圆 +y2=1的焦点,点A,B在椭圆上,若 =5 ;则点A的坐标是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,a2=2,an+2=2an+1﹣an+2. (Ⅰ)设bn=an+1﹣an , 证明{bn}是等差数列;
(Ⅱ)求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中值域为(0,+∞)的是( )
A.
B.y=x+ ({x>0})
C.y=
D.y=x﹣ (x≥1)

查看答案和解析>>

同步练习册答案