£¨2013•Î«·»Ò»Ä££©É躯Êýf(x)=
1
3
mx3+(4+m)x2£¬g(x)=alnx
£¬ÆäÖÐa¡Ù0£®
£¨ I £©Èôº¯Êýy=g£¨x£©Í¼Ïóºã¹ý¶¨µãP£¬ÇÒµãPÔÚy=f£¨x£©µÄͼÏóÉÏ£¬ÇómµÄÖµ£»
£¨¢ò£©µ±a=8ʱ£¬ÉèF£¨x£©=f¡ä£¨x£©+g£¨x£©£¬ÌÖÂÛF£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ó£©ÔÚ£¨I£©µÄÌõ¼þÏ£¬ÉèG(x)=
f(x)£¬x¡Ü1
g(x)£¬x£¾1
£¬ÇúÏßy=G£¨x£©ÉÏÊÇ·ñ´æÔÚÁ½µãP¡¢Q£¬Ê¹¡÷OPQ£¨OΪԭµã£©ÊÇÒÔOΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬ÇÒ¸ÃÈý½ÇÐÎб±ßµÄÖеãÔÚyÖáÉÏ£¿Èç¹û´æÔÚ£¬ÇóaµÄÈ¡Öµ·¶Î§£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨ I £©µãPÓëaµÄÈ¡ÖµÎ޹أ¬Áîlnx=0¼´¿ÉÇóµãP£¬´úÈëy=f£¨x£©£¬¿ÉµÃmÖµ£»
£¨¢ò£©m=8ʱ£¬Çó³öF£¨x£©£¬F¡ä£¨x£©£¬ÔÚ¶¨ÒåÓòÄÚ°´m¡Ý0£¬m£¼0Á½ÖÖÇé¿öÌÖÂ۽ⲻµÈʽF¡ä£¨x£©£¾0£¬F¡ä£¨x£©£¼0¼´¿É£»
£¨¢ó£©ÓÉ£¨I£©ÖªG£¨x£©=
-x3+x2£¬x¡Ü1
alnx£¬x£¾1
£¬ÏȼÙÉèÇúÏßy=G£¨x£©ÉÏ´æÔÚÂú×ãÌâÒâµÄÁ½µãP¡¢Q£¬Ò×ÖªP¡¢QÁ½µãÔÚyÖáÁ½²à£¬ÓÉ´Ë¿ÉÉèP£¨t£¬G£¨t£©£©£¨t£¾0£©¡¢Q£¨-t£¬t3+t2£©£¬ÓÉÌâÒâÖª¡ÏPOQΪֱ½Ç£¬´Ó¶øÓÐ
OP
OQ
=0
£¬¼´-t2+G£¨t£©£¨t3+t2£©=0¢Ù£®·Ö£¨1£©0£¼t¡Ü1ʱ£¬£¨2£©t£¾1ʱÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬´Ëʱ¿ÉÖªG£¨t£©±í´ïʽ£¬£¨1£©ÖÖÇé¿öÒ×Åжϣ¬£¨2£©ÖÖÇé¿ö·ÖÀë³ö²ÎÊýaºó¹¹Ô캯Êý£¬×ª»¯ÎªÇóº¯ÊýÖµÓò¿ÉÒÔ½â¾ö£»
½â´ð£º½â£º£¨I£©Áîlnx=0£¬Ôòx=1£¬¼´º¯Êýy=g£¨x£©µÄͼÏó¹ý¶¨µãP£¨1£¬0£©£¬
ÓÖµãPÔÚy=f£¨x£©µÄͼÏóÉÏ£¬ËùÒÔf£¨1£©=
1
3
m+£¨4+m£©=0£¬
½âµÃm=-3£®
£¨II£©F£¨x£©=mx2+2£¨4+m£©x+8lnx£¬¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
F¡ä£¨x£©=2mx+£¨8+2m£©+
8
x
=
2mx2+(8+2m)x+8
x
=
(2mx+8)(x+1)
x
£®
¡ßx£¾0£¬Ôòx+1£¾0£¬
¡àµ±m¡Ý0ʱ£¬2mx+8£¾0£¬F¡ä£¨x£©£¾0£¬´ËʱF£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
µ±m£¼0ʱ£¬ÓÉF¡ä£¨x£©£¾0µÃ0£¼x£¼-
4
m
£¬F¡ä£¨x£©£¼0£¬µÃx£¾-
4
m
£¬
´ËʱF£¨x£©ÔÚ£¨0£¬-
4
m
£©ÉÏΪÔöº¯Êý£¬ÔÚ£¨-
4
m
£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬
×ÛÉÏ£¬µ±m¡Ý0ʱ£¬F£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
m£¼0ʱ£¬ÔÚ£¨0£¬-
4
m
£©ÉÏΪÔöº¯Êý£¬ÔÚ£¨-
4
m
£¬+¡Þ£©ÉÏΪ¼õº¯Êý£®
£¨III£©ÓÉÌõ¼þ£¨I£©ÖªG£¨x£©=
-x3+x2£¬x¡Ü1
alnx£¬x£¾1
£¬
¼ÙÉèÇúÏßy=G£¨x£©ÉÏ´æÔÚÁ½µãP¡¢QÂú×ãÌâÒ⣬ÔòP¡¢QÁ½µãÖ»ÄÜÔÚyÖáÁ½²à£¬
ÉèP£¨t£¬G£¨t£©£©£¨t£¾0£©£¬ÔòQ£¨-t£¬t3+t2£©£¬
¡ß¡ÏPOQÊÇÒÔOΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬
¡à
OP
OQ
=0
£¬¡à-t2+G£¨t£©£¨t3+t2£©=0¢Ù£®
£¨1£©µ±0£¼t¡Ü1ʱ£¬G£¨t£©=-t3+t2£¬
´Ëʱ·½³Ì¢ÙΪ-t2+£¨-t3+t2£©£¨t3+t2£©=0£¬»¯¼òµÃt4-t2+1=0£¬
´Ë·½³ÌÎ޽⣬Âú×ãÌõ¼þµÄP¡¢QÁ½µã²»´æÔÚ£®
£¨2£©µ±t£¾1ʱ£¬G£¨t£©=alnt£¬
·½³Ì¢ÙΪ£º-t2+alnt•£¨t3+t2£©=0£¬¼´
1
a
=£¨t+1£©lnt£¬
Éèh£¨t£©=£¨t+1£©lnt£¨t£¾1£©£¬Ôòh¡ä£¨t£©=lnt+
1
t
+1£¬
µ±t£¾1ʱ£¬h¡ä£¨t£©£¾0£¬¼´h£¨t£©ÔÚ£¨1£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
¡àh£¨t£©µÄÖµÓòΪ£¨h£¨1£©£¬+¡Þ£©£©£¬¼´£¨0£¬+¡Þ£©£¬
¡à
1
a
£¾0£¬¡àa£¾0£®
×ÛÉÏËùÊö£¬Èç¹û´æÔÚÂú×ãÌõ¼þµÄP¡¢Q£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇa£¾0£®
µãÆÀ£º±¾Ì⿼²éÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²é¶ÔÊýº¯ÊýµÄÌØÊâµã£¬¿¼²éѧÉú¶Ô´æÔÚÐÔÎÊÌâµÄ̽¾¿½â¾öÄÜÁ¦£¬½â¾ö£¨¢ó£©ÎʵĹؼüͨ¹ý·ÖÎöÌõ¼þºÏÀíÉèµãP¡¢QµÄ×ø±ê£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Î«·»Ò»Ä££©É輯ºÏA={x|2x¡Ü4}£¬¼¯ºÏBΪº¯Êýy=lg£¨x-1£©µÄ¶¨ÒåÓò£¬ÔòA¡ÉB=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Î«·»Ò»Ä££©Èçͼ£¬Ôڱ߳¤Îª2µÄÁâÐÎABCDÖУ¬¡ÏBAD=60¡ã£¬EΪBCÖе㣬Ôò
AE
BD
=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Î«·»Ò»Ä££©Ä³³µ¶Ó×¼±¸´Ó¼×¡¢ÒÒµÈ7Á¾³µÖÐÑ¡ÅÉ4Á¾²Î¼Ó¾ÈÔ®Îï×ʵÄÔËÊ乤×÷£¬²¢°´³ö·¢Ë³ÐòÇ°ºóÅųÉÒ»¶Ó£¬ÒªÇó¼×¡¢ÒÒÖÁÉÙÓÐÒ»Á¾²Î¼Ó£¬ÇÒÈô¼×¡¢ÒÒͬʱ²Î¼Ó£¬ÔòËüÃdzö·¢Ê±²»ÄÜÏàÁÚ£¬ÄÇô²»Í¬ÅÅ·¨ÖÖÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Î«·»Ò»Ä££©ÒÑÖªÊýÁÐ{an}µÄ¸÷ÏîÅųÉÈçͼËùʾµÄÈý½ÇÐÎÊýÕó£¬ÊýÕóÖÐÿһÐеĵÚÒ»¸öÊýa1£¬a2£¬a4£¬a7£¬¡­¹¹³ÉµÈ²îÊýÁÐ{bn}£¬SnÊÇ{bn}µÄÇ°nÏîºÍ£¬ÇÒb1=a1=1£¬S5=15£®
£¨ I £©ÈôÊýÕóÖдӵÚÈýÐпªÊ¼Ã¿ÐÐÖеÄÊý°´´Ó×óµ½ÓÒµÄ˳Ðò¾ù¹¹³É¹«±ÈΪÕýÊýµÄµÈ±ÈÊýÁУ¬ÇÒ¹«±ÈÏàµÈ£¬ÒÑÖªa9=16£¬Çóa50µÄÖµ£»
£¨¢ò£©ÉèTn=
1
Sn+1
+
1
Sn+2
+¡­+
1
S2n
£¬µ±m¡Ê[-1£¬1]ʱ£¬¶ÔÈÎÒân¡ÊN*£¬²»µÈʽt3-2mt-
8
3
£¾Tn
ºã³ÉÁ¢£¬ÇótµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•Î«·»Ò»Ä££©¸´Êýz=
3+i
1-i
µÄ¹²éÊý
.
z
=£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸