·ÖÎö£º£¨ I £©µãPÓëaµÄÈ¡ÖµÎ޹أ¬Áîlnx=0¼´¿ÉÇóµãP£¬´úÈëy=f£¨x£©£¬¿ÉµÃmÖµ£»
£¨¢ò£©m=8ʱ£¬Çó³öF£¨x£©£¬F¡ä£¨x£©£¬ÔÚ¶¨ÒåÓòÄÚ°´m¡Ý0£¬m£¼0Á½ÖÖÇé¿öÌÖÂ۽ⲻµÈʽF¡ä£¨x£©£¾0£¬F¡ä£¨x£©£¼0¼´¿É£»
£¨¢ó£©ÓÉ£¨I£©ÖªG£¨x£©=
£¬ÏȼÙÉèÇúÏßy=G£¨x£©ÉÏ´æÔÚÂú×ãÌâÒâµÄÁ½µãP¡¢Q£¬Ò×ÖªP¡¢QÁ½µãÔÚyÖáÁ½²à£¬ÓÉ´Ë¿ÉÉèP£¨t£¬G£¨t£©£©£¨t£¾0£©¡¢Q£¨-t£¬t
3+t
2£©£¬ÓÉÌâÒâÖª¡ÏPOQΪֱ½Ç£¬´Ó¶øÓÐ
•=0£¬¼´-t
2+G£¨t£©£¨t
3+t
2£©=0¢Ù£®·Ö£¨1£©0£¼t¡Ü1ʱ£¬£¨2£©t£¾1ʱÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬´Ëʱ¿ÉÖªG£¨t£©±í´ïʽ£¬£¨1£©ÖÖÇé¿öÒ×Åжϣ¬£¨2£©ÖÖÇé¿ö·ÖÀë³ö²ÎÊýaºó¹¹Ô캯Êý£¬×ª»¯ÎªÇóº¯ÊýÖµÓò¿ÉÒÔ½â¾ö£»
½â´ð£º½â£º£¨I£©Áîlnx=0£¬Ôòx=1£¬¼´º¯Êýy=g£¨x£©µÄͼÏó¹ý¶¨µãP£¨1£¬0£©£¬
ÓÖµãPÔÚy=f£¨x£©µÄͼÏóÉÏ£¬ËùÒÔf£¨1£©=
m+£¨4+m£©=0£¬
½âµÃm=-3£®
£¨II£©F£¨x£©=mx
2+2£¨4+m£©x+8lnx£¬¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
F¡ä£¨x£©=2mx+£¨8+2m£©+
=
=
£®
¡ßx£¾0£¬Ôòx+1£¾0£¬
¡àµ±m¡Ý0ʱ£¬2mx+8£¾0£¬F¡ä£¨x£©£¾0£¬´ËʱF£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
µ±m£¼0ʱ£¬ÓÉF¡ä£¨x£©£¾0µÃ0£¼x£¼-
£¬F¡ä£¨x£©£¼0£¬µÃx£¾-
£¬
´ËʱF£¨x£©ÔÚ£¨0£¬-
£©ÉÏΪÔöº¯Êý£¬ÔÚ£¨
-£¬+¡Þ£©ÉÏΪ¼õº¯Êý£¬
×ÛÉÏ£¬µ±m¡Ý0ʱ£¬F£¨x£©ÔÚ£¨0£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
m£¼0ʱ£¬ÔÚ£¨0£¬-
£©ÉÏΪÔöº¯Êý£¬ÔÚ£¨
-£¬+¡Þ£©ÉÏΪ¼õº¯Êý£®
£¨III£©ÓÉÌõ¼þ£¨I£©ÖªG£¨x£©=
£¬
¼ÙÉèÇúÏßy=G£¨x£©ÉÏ´æÔÚÁ½µãP¡¢QÂú×ãÌâÒ⣬ÔòP¡¢QÁ½µãÖ»ÄÜÔÚyÖáÁ½²à£¬
ÉèP£¨t£¬G£¨t£©£©£¨t£¾0£©£¬ÔòQ£¨-t£¬t
3+t
2£©£¬
¡ß¡ÏPOQÊÇÒÔOΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬
¡à
•=0£¬¡à-t
2+G£¨t£©£¨t
3+t
2£©=0¢Ù£®
£¨1£©µ±0£¼t¡Ü1ʱ£¬G£¨t£©=-t
3+t
2£¬
´Ëʱ·½³Ì¢ÙΪ-t
2+£¨-t
3+t
2£©£¨t
3+t
2£©=0£¬»¯¼òµÃt
4-t
2+1=0£¬
´Ë·½³ÌÎ޽⣬Âú×ãÌõ¼þµÄP¡¢QÁ½µã²»´æÔÚ£®
£¨2£©µ±t£¾1ʱ£¬G£¨t£©=alnt£¬
·½³Ì¢ÙΪ£º-t
2+alnt•£¨t
3+t
2£©=0£¬¼´
=£¨t+1£©lnt£¬
Éèh£¨t£©=£¨t+1£©lnt£¨t£¾1£©£¬Ôòh¡ä£¨t£©=lnt+
+1£¬
µ±t£¾1ʱ£¬h¡ä£¨t£©£¾0£¬¼´h£¨t£©ÔÚ£¨1£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
¡àh£¨t£©µÄÖµÓòΪ£¨h£¨1£©£¬+¡Þ£©£©£¬¼´£¨0£¬+¡Þ£©£¬
¡à
£¾0£¬¡àa£¾0£®
×ÛÉÏËùÊö£¬Èç¹û´æÔÚÂú×ãÌõ¼þµÄP¡¢Q£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇa£¾0£®