精英家教网 > 高中数学 > 题目详情
18.若方程x+y-4$\sqrt{x+y}$+2k=0表示两条不同直线,则k的取值范围是(  )
A.k<2B.k≤2C..0≤k<2D.0≤k≤2

分析 令$\sqrt{x+y}=t$(t≥0),把原方程化为t2-4t+2k=0,由题意可得$\left\{\begin{array}{l}{△=16-8k>0}\\{2k≥0}\end{array}\right.$,求解不等式组得答案.

解答 解:令$\sqrt{x+y}=t$(t≥0),
则方程x+y-4$\sqrt{x+y}$+2k=0化为t2-4t+2k=0,
要使方程x+y-4$\sqrt{x+y}$+2k=0表示两条不同直线,
则方程t2-4t+2k=0有两不等非负根,
即$\left\{\begin{array}{l}{△=16-8k>0}\\{2k≥0}\end{array}\right.$,解得:0≤k<2.
故选:C.

点评 本题考查曲线与方程,训练了一元二次方程根与系数关系的应用,考查了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知sinα+cosα=$\frac{1}{4}$,则sin2α=-$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{m}$=(2acosx,sinx),$\overrightarrow{n}$=(cosx,bcosx),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{\sqrt{3}}{2}$,若函数f(x)的图象在y轴上的截距为$\frac{\sqrt{3}}{2}$,与y轴最邻近的最高点是($\frac{π}{12}$,1).
(1)求函数f(x)的解析式;
(2)设A为三角形的一个内角,且f($\frac{A}{2}$-$\frac{π}{6}$)=$\frac{2\sqrt{5}}{5}$,求3sin2A-2sinAcosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sinx•$\sqrt{si{n}^{2}x}$+cosx•$\sqrt{co{s}^{2}x}$=-1,则x为(  )
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.用五点法分别作下列函数在[-2π,2π]上的图象:
(1)y=1-sinx;
(2)y=sin(-x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以下四个命题中:
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0;
③设随机变量 X~N(1,σ2),若P(0<X<1)=0.35,则P(0<X<2)=0.7;
④两个随机变量的线性相关性越强,则相关系数就越接近于1.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知cos(α-β)=-$\frac{4}{5}$,sin(α+β)=-$\frac{3}{5}$,$\frac{π}{2}$<α-β<π,$\frac{3π}{2}$<α+β<2π,求β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax,g(x)=a2x-b,其中b<0,a>0且a≠1.当x∈[-1,1]时,y=f(x)的最大值与最小值之和为$\frac{5}{2}$.
(1)求a的值; 
(2)若a>1,且不等式|$\frac{f(x)+bg(x)}{f(x)}$|≤1在x∈[0,1]恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在正方体ABCD-A1B1C1D1中,求:
(1)BC1与平面ACC1A1所成的角;
(2)A1B1与平面A1C1B所成的角.

查看答案和解析>>

同步练习册答案