精英家教网 > 高中数学 > 题目详情
已知数列{an}是公差为d(d≠0)的等差数列,数列{bn}是公比为q的(q∈R)的等比数列,若函数f(x)=x2,且a1=f(d-1),a5=f(2d-1),b1=f(q-2),b3=f(q).
(1)求数列{an}和{bn}的通项公式;
(2)设数列{cn}的前n项和为Sn,对一切n∈N*,都有
c1
b1
+
c2
2b2
+…+
cn
nbn
=an+1
成立,求Sn
分析:(1)首先利用f(x)的解析式表示出a1,a5,b1,b3,然后利用等差数列和等比数列的通项公式,建立方程,求解即可.
(2)首先根据题设中的递推公式可得c1=3,n≥2时,an+1-an=
cn
nbn
=2,故可求出cn,然后,利用错位相减法求出sn
解答:解:(1)∵数列{an}是公差为d(d≠0)的等差数列,f(x)=x2,且a1=f(d-1),a5=f(2d-1),
∴(d-1)2+4d=(2d-1)2
∴d=2,a1=1.
∴an=2n-1;
∵数列{bn}是公比为q的(q∈R)的等比数列,f(x)=x2,且b1=f(q-2),b3=f(q),
则b2=q
∴q2=q2(q-2)2
解得q=3,或q=1,又b1=1.
∴bn=3n-1;或bn=1
(2)∵对一切n∈N*,都有
c1
b1
+
c2
2b2
+…+
cn
nbn
=an+1
成立,
∴当n=1时,
c1
b1
=a2

∵a1=3,b1=1,
∴c1=3,S1=3;
当n≥2时,∵
c1
b1
+
c2
2b2
+…+
cn
nbn
=an+1

c1
b1
+
c2
2b2
+…+
cn-1
(n-1)bn-1
=an
cn
nbn
=an+1-an=2

∴cn=2n•3n-1
故cn=
3,n=1
2n•3n-1,n≥2

∴Sn=c1+c2+…+cn
=3+2•2•3+2•3•32+2•n•3n-1
=2(1•30+2•31+3•32+n•3n-1)+1
设x=1•30+2•31+3•32+…+n•3n-1,①
则3•x=1•31+2•32+…+(n-1)•3n-1+n•3n,②
②-①得2x=n•3n-(3n-1+3n-2+…+30)=n•3n-
3n-1
2

∵sn=2x+1,
Sn=(n-
1
2
)•3n+
3
2

又S1=3满足上式,
综上,Sn=(n-
1
2
)•3n+
3
2
,n∈N*
点评:本题考查了数列知识和函数的综合运用,以及灵活运用数学方法的能力,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,则这个数列的前n项和Sn的计算公式为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

按照等差数列的定义我们可以定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a8的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个数列中,如果?n∈N*,都有an•an+1•an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=3,公积为27,则a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中数学 来源: 题型:

一个数列,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么这个数列的前21项和S21的值为
52
52

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数列叫做等差数列,这个常数叫做该数列的公差.
(1)类比等差数列的定义给出“等和数列”的定义;
(2)已知数列{an}是等和数列,且a1=2,公和为5,求 a18的值,并猜出这个数列的通项公式(不要求证明).

查看答案和解析>>

同步练习册答案