精英家教网 > 高中数学 > 题目详情

①若函数y=2x的定义域是{x|x≤0},则它的值域是{y|y≤1};
②若函数的定义域是{x|x>2},则它的值域是{y|y≤};
③若函数y=x2的值域是{y|0≤y≤4},则它的定义域是{x|-2≤x≤2};
④若函数y=log2x的值域是{y|y≤3},则它的定义域是{x|x≤8};
其中不正确的命题的序号是(    )(把你认为不正确的序号都填上)。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四种说法正确的是
 
 (把你认为正确说法的序号都填上).
①命题“?x∈R,x2+1>3x“的否定是“?x∈R,x2+1≤3x、
②将函数y=sin(2x+
π
6
)
的图象向左平移
π
6
个单位,得到函数y=-cos2x的图象;
③若“?p”与“p∨q”都为真,则q-定为真;
④“0<a<1”是“loga(a+1)<loga(
1
a
+1)
”的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5x
的定义域为(0,+∞).设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设点O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3处的切线方程为(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求证:曲线g(x)上的任意一点处的切线与直线x=0和直线y=ax围成的三角形面积为定值;
(2)若f(3)=3,是否存在实数m,k,使得f(x)+f(m-x)=k对于定义域内的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三个解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列四种说法正确的是______ (把你认为正确说法的序号都填上).
①命题“?x∈R,x2+1>3x“的否定是“?x∈R,x2+1≤3x、
②将函数y=sin(2x+
π
6
)
的图象向左平移
π
6
个单位,得到函数y=-cos2x的图象;
③若“?p”与“p∨q”都为真,则q-定为真;
④“0<a<1”是“loga(a+1)<loga(
1
a
+1)
”的充分条件.

查看答案和解析>>

同步练习册答案