Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì£®
ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ
x=acos?
y=bsin?
£¨a£¾b£¾0£¬?Ϊ²ÎÊý£©£¬ÒÔ¦¯Îª¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2ÊÇÔ²ÐÄÔÚ¼«ÖáÉÏÇÒ¾­¹ý¼«µãµÄÔ²£¬ÒÑÖªÇúÏßC1ÉϵĵãM£¨2£¬
3
£©¶ÔÓ¦µÄ²ÎÊý¦Õ=
¦Ð
3
£»¦È=
¦Ð
4
£»ÓëÇúÏßC2½»ÓÚµãD£¨
2
£¬
¦Ð
4
£©
£¨1£©ÇóÇúÏßC1£¬C2µÄ·½³Ì£»
£¨2£©A£¨¦Ñ?£¬¦È£©£¬¦¢£¨¦Ñ2£¬¦È+
¦Ð
2
£©ÊÇÇúÏßC1ÉϵÄÁ½µã£¬Çó
1
¦Ñ21
+
1
¦Ñ22
µÄÖµ£®
£¨1£©½«M£¨2£¬
3
£©¼°¶ÔÓ¦µÄ²ÎÊý¦Õ=
¦Ð
3
£»¦È=
¦Ð
4
£»
´úÈë
x=acos?
y=bsin?
µÃ£º
2=acos
¦Ð
3
3
=bsin
¦Ð
3

µÃ£º
a=4
b=2

¡àÇúÏßC1µÄ·½³ÌΪ£º
x=4cos?
y=2sin?
£¨∅Ϊ²ÎÊý£©»ò
x2
16
+
y2
4
=1
£®
ÉèÔ²C2µÄ°ë¾¶R£¬ÔòÔ²C2µÄ·½³ÌΪ£º¦Ñ=2Rcos¦È£¨»ò£¨x-R£©2+y2=R2£©£¬½«µãD£¨
2
£¬
¦Ð
4
£©
´úÈëµÃ£º
2
=2R•
2
2

¡àR=1
¡àÔ²C2µÄ·½³ÌΪ£º¦Ñ=2cos¦È£¨»ò£¨x-1£©2+y2=1£©¡­£¨5·Ö£©
£¨2£©ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ£º
¦Ñ2cos2¦È
16
+
¦Ñ2sin2¦È
4
=1
½«A£¨¦Ñ?£¬¦È£©£¬¦¢£¨¦Ñ?£¬¦È+
¦Ð
2
£©´úÈëµÃ£º
¦Ñ12cos2¦È
16
+
¦Ñ12sin2¦È
4
=1£¬
¦Ñ22cos2¦È
16
+
¦Ñ22sin2¦È
4
=1
¡à
1
¦Ñ21
+
1
¦Ñ22
=£¨
cos2¦È
16
+
sin2¦È
4
£©+£¨
sin2¦È
16
+
cos2¦È
4
£©=
5
16
¡­£¨10·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

[Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì]
ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=
1
2
t
y=
2
2
+
3
2
t
£¨tΪ²ÎÊý£©£¬ÈôÒÔÖ±½Ç×ø±êϵxoy µÄOµãΪ¼«µã£¬OxΪ¼«ÖᣬÇÒ³¤¶Èµ¥Î»Ïàͬ£¬½¨Á¢¼«×ø±êϵ£¬µÃÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos£¨¦È-
¦Ð
4
£©£®Ö±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|AB|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬¡÷ABCµÄÍâ½ÓÔ²µÄÇÐÏßAEÓëBCµÄÑÓ³¤ÏßÏཻÓÚµãE£¬¡ÏBACµÄƽ·ÖÏßÓëBC
½»ÓÚµãD£®ÇóÖ¤£ºED2=EB•EC£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
Çó¾ØÕóM=
-14
26
µÄÌØÕ÷ÖµºÍÌØÕ÷ÏòÁ¿£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÒÔOΪ¼«µãµÄ¼«×ø±êϵÖУ¬Ö±ÏßlÓëÇúÏßCµÄ¼«×ø±ê·½³Ì·Ö±ðÊǦÑcos(¦È+
¦Ð
4
)=
3
2
2
ºÍ¦Ñsin2¦È=4cos¦È£¬Ö±ÏßlÓëÇúÏßC½»Óڵ㣮A£¬B£¬C£¬ÇóÏß¶ÎABµÄ³¤£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
¶ÔÓÚʵÊýx£¬y£¬Èô|x-1|¡Ü1£¬|y-2|¡Ü1£¬Çó|x-y+1|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÁÉÄþ£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êϵxoyÖÐÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢×ø±êϵ£®Ô²C1£¬Ö±ÏßC2µÄ¼«×ø±ê·½³Ì·Ö±ðΪ¦Ñ=4sin¦È£¬¦Ñcos£¨¦È-
¦Ð
4
£©=2
2
£®
£¨¢ñ£©ÇóC1ÓëC2½»µãµÄ¼«×ø±ê£»
£¨¢ò£©ÉèPΪC1µÄÔ²ÐÄ£¬QΪC1ÓëC2½»µãÁ¬ÏßµÄÖе㣬ÒÑÖªÖ±ÏßPQµÄ²ÎÊý·½³ÌΪ
x=t3+a
y=
b
2
t3+1
£¨t¡ÊRΪ²ÎÊý£©£¬Çóa£¬bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡ÐÞ4-4£º
×ø±êϵÓë²ÎÊý·½³ÌÔÚÆ½ÃæÖ±½Ç×ø±êϵx0yÖУ¬ÇúÏßC1Ϊx=acos¦Õ£¬y=sin¦Õ£¨1£¼a£¼6£¬¦ÕΪ²ÎÊý£©£®
ÔÚÒÔ0Ϊԭµã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êÖУ¬ÇúÏßC2µÄ·½³ÌΪ¦Ñ=6cos¦È£¬ÉäÏߦÉΪ¦È=¦Á£¬¦ÉÓëC1µÄ½»µãΪA£¬¦ÉÓëC2³ý¼«µãÍâµÄÒ»¸ö½»µãΪB£®µ±¦Á=0ʱ£¬|AB|=4£®
£¨1£©ÇóC1£¬C2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Èô¹ýµãP£¨1£¬0£©ÇÒбÂÊΪ
3
µÄÖ±ÏßmÓëÇúÏßC1½»ÓÚD¡¢EÁ½µã£¬Çó|PD|Óë|PE|²îµÄ¾ø¶ÔÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•½úÖÐÈýÄ££©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³ÌÑ¡½²
ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßc1µÄ²ÎÊý·½³ÌΪ£º
x=2cos¦È
y=2sin¦È
£¨¦ÈΪ²ÎÊý£©£¬°ÑÇúÏßc1ÉÏËùÓеãµÄ×Ý×ø±êѹËõΪԭÀ´µÄÒ»°ëµÃµ½ÇúÏßc2£¬ÒÔOΪ¼«µã£¬xÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ
2
¦Ñcos(¦È-
¦Ð
4
)=4
£®
£¨1£©ÇóÇúÏßc2µÄÆÕͨ·½³Ì£¬²¢Ö¸Ã÷ÇúÏßÀàÐÍ£»
£¨2£©¹ý£¨1£¬0£©µãÓël´¹Ö±µÄÖ±Ïßl1ÓëÇúÏßc2ÏཻÓëA¡¢BÁ½µã£¬ÇóÏÒABµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸