精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=$\frac{2}{x}$+ln x,则f(x)的极小值为(  )
A.1B.2C.1+ln2D.2+ln2

分析 f(x)的定义域为{x|x>0},f′(x)=-$\frac{2}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-2}{{x}^{2}}$,由此利用怕数性质能求出f(x)极小值=f(2)=1+ln2.

解答 解:∵f(x)=$\frac{2}{x}$+ln x,
∴f(x)的定义域为{x|x>0},
f′(x)=-$\frac{2}{{x}^{2}}$+$\frac{1}{x}$=$\frac{x-2}{{x}^{2}}$,
由f′(x)=0,得x=2,
当x∈(0,2)时,f′(x)<0,当x∈(2,+∞)时,f′(x)>0.
∴当x=2时,f(x)极小值=f(2)=1+ln2.
故选:C.

点评 本题考查函数的极小值的求法,考查导数、函数单调性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若A,B,C是直线l上不同的三个点,若O不在l上,存在实数x使得${x^2}\overrightarrow{OA}+2x\overrightarrow{OB}+\overrightarrow{BC}$=$\overrightarrow{0}$,实数x为(  )
A.-2B.0C.$\frac{{-1+\sqrt{5}}}{2}$D.$\frac{{1+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{x}{5π}$-sin(2x+$\frac{π}{6}$)的零点的个数为(  )
A.16B.18C.19D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知锐角△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(cosC+sinC,1),$\overrightarrow{n}$=$(cosC-sinC,\frac{1}{2})$,且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角C的大小;
(2)若c=3,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=|-x2+2x+3|的单调减区间为(-∞,-1]和[1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(x+m)lnx曲线y=f(x)在x=e处切线与y=2x平行.
(1)求实数m值及y=f(x)极值
(2)若当x>1时,函数y=(ax+1)(x-1)图象恒在y=(a+1)f(x)图象上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算:
(1)($\frac{1}{16}$)${\;}^{-\frac{1}{2}}$+(-$\frac{2}{3}$)0-$\sqrt{{3}^{2}}$+log39
(2)(lg2)2+lg5•lg20-1
(3)sin220°+cos220°+$\sqrt{3}$sin20°cos80°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+2ax+2lnx(a∈R),g(x)=2ex+3x2(e为自然对数的底数).
(Ⅰ)若a=1,求f(x)在x=1处的切线方程;
(Ⅱ)若函数y=f(x)的图象与函数y=g(x)的图象有两个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题p:实数x满足|ax+2|≥1,其中a>0,命题q:实数x满足log3(x2-2x-2)≥0
(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围
(Ⅱ)若q是¬p的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案