精英家教网 > 高中数学 > 题目详情

【题目】某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为三类工种,从事三类工种的人数分布比例如图,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付频率).

对于三类工种职工每人每年保费分别为元,元,元,出险后的赔偿金额分别为100万元,100万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.

(Ⅰ)若保险公司要求利润的期望不低于保费的20%,试确定保费所要满足的条件;

(Ⅱ)现有如下两个方案供企业选择;

方案1:企业不与保险公司合作,企业自行拿出与保险提供的等额的赔偿金额赔付给出险职工;

方案2:企业于保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付.

若企业选择翻翻2的支出(不包括职工支出)低于选择方案1的支出期望,求保费所要满足的条件,并判断企业是否可与保险公司合作.(若企业选择方案2的支出低于选择方案1的支出期望,且与(Ⅰ)中保险公司所提条件不矛盾,则企业可与保险公司合作.)

【答案】(Ⅰ)元;(Ⅱ)企业有可能与保险公司合作.

【解析】试题分析:(1)分别求出工种工种工种C赔偿金额的期望根据保险公司要求利润的期望不低于保费的20%可得结果;(2)求出该企业不与保险公司合作赔偿金的期望值及该企业与保险公司合作保费支出比较大小即可得结果.

试题解析:(Ⅰ)设工种职工的每份保单保险公司的效益为随机变量,则的分布列为

保险公司期望收益

.

根据要求

.

解得

所以每张保单的保费需要满足元.

(Ⅱ)若该企业不与保险公司合作,则安全支出,即赔偿金的期望值为

.

若该企业与保险公司合作,则安全支出,即保费为

.

解得

结果与(Ⅰ)不冲突,所以企业有可能与保险公司合作.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有能力互异的3人应聘同一公司,他们按照报名顺序依次接受面试,经理决定“不录用第一个接受面试的人,如果第二个接受面试的人比第一个能力强,就录用第二个人,否则就录用第三个人”,记该公司录用到能力最强的人的概率为p,录用到能力中等的人的概率为q,则(p,q)=(
A.(
B.(
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型企业招聘会的现场,所有应聘者的初次面试都由张、王、李三位专家投票决定是否进入下一轮测试,张、王、李三位专家都有“通过”、“待定”、“淘汰”三类票各一张,每个应聘者面试时,张、王、李三位专家必须且只能投一张票,每人投三类票中的任意一类的概率均为 ,且三人投票相互没有影响,若投票结果中至少有两张“通过”票,则该应聘者初次面试获得“通过”,否则该应聘者不能获得“通过”.
(1)求应聘者甲的投票结果获得“通过”的概率;
(2)记应聘者乙的投票结果所含“通过”和“待定”票的票数之和为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长为,且椭圆与圆 的公共弦长为.

(1)求椭圆的方程.

(2)经过原点作直线(不与坐标轴重合)交椭圆于 两点, 轴于点,点在椭圆上,且,求证: 三点共线..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆是圆上的一个动点,线段的垂直平分线与线段相交于点.

(Ⅰ)求点的轨迹方程;

(Ⅱ)记点的轨迹为是直线上的两点,满足,曲线的过的两条切线(异于)交于点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线在平面直角坐标系下的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的普通方程及极坐标方程;

(2)直线的极坐标方程是,射线 与曲线交于点与直线交于点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是为参数).

(Ⅰ)将曲线的极坐标方程化为直角坐标方程;

(Ⅱ)若直线与曲线相交于 两点,且,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案