精英家教网 > 高中数学 > 题目详情
已知函数y=f(x),对任意的x∈(-
π
2
π
2
)满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是(  )
A、
3
f(-
π
3
)<f(-
π
6
)
B、f(-
π
6
)>
3
2
f(0)
C、f(
π
4
)>
2
f(
π
3
)
D、f(0)>
2
f(
π
4
)
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:根据条件构造函数g(x)=
f(x)
cosx
,求函数的导数,利用函数的单调性和导数之间的关系即可得到结论.
解答: 解:构造函数g(x)=
f(x)
cosx

则g′(x)=
f′(x)cosx-f(x)(cosx)′
cos2x
=
1
cos2x
(f′(x)cosx+f(x)sinx),
∵对任意的x∈(-
π
2
π
2
)满足f′(x)cosx+f(x)sinx>0,
∴g′(x)>0,即函数g(x)在x∈(-
π
2
π
2
)单调递增,
则g(-
π
3
)<g(-
π
6
),即
f(-
π
3
)
cos(-
π
3
)
f(-
π
6
)
cos(-
π
6
)
,∴
3
f(-
π
3
)<f(-
π
6
),
故A正确,故选:A.
点评:本题主要考查函数单调性的应用,利用条件构造函数是解决本题的关键,综合性较强,有一点的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若α是三角形的一个内角,且sinα+cosα=
1
5
,则三角形的形状为(  )
A、钝角三角形B、锐角三角形
C、直角三角形D、无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2acoskπ•lnx(k∈N*,a∈R,且a>0).
(1)讨论函数f(x)的单调性;
(2)若k=2014,关于x的方程f(x)=2ax有唯一解,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2-2x+b(b∈R),
(Ⅰ)解关于x的不等式f(x)≥0;
(Ⅱ)当x∈[-1,1]时,恒有f(x)<0,求实数b的取值范围;
(Ⅲ)当b=7,不等式f(x)-k(x+1)≥0,对于x∈[0,2]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,底面ABCD为梯形,AB∥CD,AD⊥CD,AB=1,PA⊥平面ABCD,PA=AD=DC=2AB,点E是PC中点.
(Ⅰ)求证:BE⊥DC
(Ⅱ)若F为棱PC上一点,满足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行千秋测试.成绩在7.9米以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的 一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”已知a、b的成绩均为优秀,求两人至少有1人入选的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

连结正三棱柱的顶点,可以组成
 
个四面体,可以连成
 
对异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x、y满足约束条件
x-y≤1
x+y≥2
y≤2
,则目标函数z=x2+y2的取值范围为(  )
A、[2,8]
B、[4,13]
C、[2,13]
D、[
5
2
,13]

查看答案和解析>>

科目:高中数学 来源: 题型:

等腰△ABC中,AB=AC=5,BC=8,将三角形绕BC边上中线旋转半周所成的几何体的体积为
 

查看答案和解析>>

同步练习册答案