精英家教网 > 高中数学 > 题目详情
已知A,B,C为锐角△ABC的三个内角,向量
m
=(2-2sinA,cosA+sinA),
n
=(1+sinA,cosA-sinA),且
m
n

(Ⅰ)求A的大小;
(Ⅱ)求y=2sin2B+cos(
3
-2B)取最大值时角B的大小.
分析:(Ⅰ)根据两向量的垂直,利用两向量的坐标求得(2-2sinA)(1+sinA)+(cosA+sinA)(cosA-sinA)=0,利用同角三角函数的基本关系整理求得cosA的值,进而求得A.
(Ⅱ)根据A的值,求得B的范围,然后利用两角和公式和二倍角公式对函数解析式化简整理后.利用B的范围和正弦函数的单调性求得函数的最大值,及此时B的值.
解答:解:(Ⅰ)∵
m
n

∴(2-2sinA)(1+sinA)+(cosA+sinA)(cosA-sinA)=0
?2(1-sin2A)=sin2A-cos2A
?2cos2A=1-2cos2A
?cos2A=
1
4

∵△ABC是锐角三角形,∴cosA=
1
2
?A=
π
3


(Ⅱ)∵△ABC是锐角三角形,且A=
π
3
,∴
π
6
<B<
π
2

y=2sin2B+cos(
3
-2B)

=1-cos2B-
1
2
cos2B+
3
2
sin2B
=
3
2
sin2B-
3
2
cos2B+1
=
3
sin(2B-
π
3
)+1
当y取最大值时,2B-
π
3
=
π
2
,即B=
5
12
π
点评:本题主要考查了三角函数的化简求值,向量的基本性质.考查了学生对基础知识的掌握和基本的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A,B,C为锐角△ABC的三个内角,向量
m
=(2-2sinA,cosA+sinA)与
n
=(sinA-cosA,1+sinA)共线.
(1)求角A的大小;
(2)求函数y=2sin2B+cos
C-3B
2
的值域.

查看答案和解析>>

科目:高中数学 来源:2010年湖北省襄樊市高三三月调考数学试卷(解析版) 题型:解答题

已知A,B,C为锐角△ABC的三个内角,向量=(2-2sinA,cosA+sinA),=(1+sinA,cosA-sinA),且
(Ⅰ)求A的大小;
(Ⅱ)求y=2sin2B+cos(-2B)取最大值时角B的大小.

查看答案和解析>>

科目:高中数学 来源:2010年北京市首师大附中高三大练习数学试卷10(理科)(解析版) 题型:解答题

已知A,B,C为锐角△ABC的三个内角,向量=(2-2sinA,cosA+sinA),=(1+sinA,cosA-sinA),且
(Ⅰ)求A的大小;
(Ⅱ)求y=2sin2B+cos(-2B)取最大值时角B的大小.

查看答案和解析>>

科目:高中数学 来源:2014届吉林省高一上学期期末考试数学 题型:填空题

已知A、B、C为锐角三角形ABC的三个内角,向量p=(1+sinA,1+cosA),

q=(1+sinB,-1-cosB) 则向量 p与q的夹角是_____________

 

查看答案和解析>>

同步练习册答案