【题目】已知关于x的不等ax2﹣3x+2>0的解集{x|x<1或x>b}
(Ⅰ)求a,b的值;
(Ⅱ)解关于x的不等式:ax2﹣(ac+b)x+bx<0.
【答案】解:(Ⅰ)∵不等式ax2﹣3x+2>0的解集是{x|x<1或x>b},
∴方程ax2﹣3x+2=0的实数根是1和b,
由根与系数的关系,得;![]()
解得a=1,b=2;
(Ⅱ)∵a=1,b=2;
∴不等式ax2﹣(ac+b)x+bx<0化为
x2﹣(c+2)x+2x<0,
即x(x﹣c)<0;
∴当c>0时,解得0<x<c,
当c=0时,不等式无解,
当c<0时,解得c<x<0;
综上,当c>0时,不等式的解集是(0,c),
当c=0时,不等式的解集是,
当c<0时,不等式的解集是(c,0).
【解析】(Ⅰ)根据不等式ax2﹣3x+2>0的解集,得出方程ax2﹣3x+2=0的实数根,由根与系数的关系,求出a、b的值;(Ⅱ)由a、b的值,化简不等式ax2﹣(ac+b)x+bx<0,讨论c的值,求出不等式的解集即可.
【考点精析】认真审题,首先需要了解解一元二次不等式(求一元二次不等式![]()
解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边).
科目:高中数学 来源: 题型:
【题目】已知在直角坐标
中,以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的参数方程为:
,曲线
的极坐标方程: ![]()
(1)写出
和
的普通方程;
(2)若
与
交于两点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4;坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数).在以坐标原点为极点,
轴正半轴为极轴的极坐标中,曲线
.
(Ⅰ)求直线
的普通方程和曲线
的直角坐标方程.
(Ⅱ)求曲线
上的点到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一元二次不等式﹣x2+x+2>0的解集是( )
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
,
,则下列说法正确的是( )
A. 把
上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线![]()
B. 把
上各点横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移
个单位长度,得到曲线![]()
C. 把曲线
向右平移
个单位长度,再把得到的曲线上各点横坐标缩短到原来的
,纵坐标不变,得到曲线![]()
D. 把曲线
向右平移
个单位长度,再把得到的曲线上各点横坐标缩短到原来的
,纵坐标不变,得到曲线![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设向量
=(cosθ,sinθ),
=(﹣
,
);
(1)若
∥
,且θ∈(0,π),求θ;
(2)若|3
+
|=|
﹣3
|,求|
+
|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且a1=2,an+1=
Sn(n=1,2,3,…).
(1)证明:数列{
}是等比数列;
(2)设bn=
,求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com