精英家教网 > 高中数学 > 题目详情
5.已知f(x)是定义在R上的奇函数,当X≥0时,f(x)=2x-1.
(1)求当x<0时,f(x)的解析式;
(2)若f(x)≤5,求x的取值范围.

分析 (1)当x<0时,-x>0,结合题意以及函数的奇偶性可得;
(2)f(x)≤5等价于$\left\{\begin{array}{l}{x<0}\\{2x+1≤5}\end{array}\right.$或$\left\{\begin{array}{l}{x≥0}\\{2x-1≤5}\end{array}\right.$,分别解不等式组综合可得.

解答 解:(1)当x<0时,-x>0,
∵当x≥0时,f(x)=2x-1,
∴f(-x)=-2x-1,
又∵f(x)是定义在R上的奇函数,
∴-f(x)=f(-x)=-2x-1,
∴当x<0时,f(x)的解析式为f(x)=2x+1;
(2)由(1)可知f(x)=$\left\{\begin{array}{l}{2x+1,x<0}\\{2x-1,x≥0}\end{array}\right.$,
∴f(x)≤5等价于$\left\{\begin{array}{l}{x<0}\\{2x+1≤5}\end{array}\right.$或$\left\{\begin{array}{l}{x≥0}\\{2x-1≤5}\end{array}\right.$,
分别解不等式组可得x<0或0≤x≤3,
∴x的取值范围为(-∞,3]

点评 本题考查函数解析式的求解方法,涉及函数的奇偶性和不等式组的解法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知$P:|\frac{4-x}{3}|≤2,q:(x+m-1)(x-m-1)≤0,(m>0)$,若¬p是¬q的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=$\left\{\begin{array}{l}{lo{g}_{a}x,x>1}\\{(6-a)^{x}-2a,x≤1}\end{array}\right.$.
(1)若a=4,求f(f(2))的值;
(2)若f(x)是R上的单调递增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和Sn满足:Sn=an2+bn,且a1=1,a2=3.
(I)求数列{an}的通项公式;
(Ⅱ)记bn=2${\;}^{{a}_{n}}$,数列{bn}的前n项和Tn,求证:Tn≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行下列程序框图,则输出结果为(  )
A.413B.404C.397D.407

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)的部分图象如图所示,若不等式-2<f(x+t)<4的解集为(-1,2),则实数t的值为-1.(写过程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图程序框图表示的算法是:求1+2+3+4+…+n>20时n的最小值,则输出框中应填(  )
A.iB.i+1C.i-1D.n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知过点P(1,1)且斜率为-t(t>0)的直线l与x,y轴分别交于A,B两点,分别过A,B作直线2x+y=0的垂线,垂足分别为D,C,求四边形ABCD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.${(-\frac{27}{8})}^{\frac{1}{3}}$-(-16)0+($\frac{2}{3}$)-2+$\frac{{log}_{9}64}{{log}_{3}4}$.

查看答案和解析>>

同步练习册答案