分析 (1)要使原函数f(x)=$\frac{\sqrt{x+3}}{x-5}$有意义,则根式内部的代数式大于等于0且分式的分母不为0,求x即可得答案;
(2)要使原函数f(x)=$\frac{\root{3}{4x+8}}{3x-2}$有意义,则分式的分母不为0,求x即可得答案.
解答 解:(1)要使原函数f(x)=$\frac{\sqrt{x+3}}{x-5}$有意义;
则$\left\{\begin{array}{l}{x+3≥0}\\{x-5≠0}\end{array}\right.$,
∴x≥-3且x≠5.
∴f(x)=$\frac{\sqrt{x+3}}{x-5}$的定义域为:[-3,5)∪(5,+∞);
(2)要使原函数f(x)=$\frac{\root{3}{4x+8}}{3x-2}$有意义,
则3x-2≠0,
∴$x≠\frac{2}{3}$.
∴f(x)=$\frac{\root{3}{4x+8}}{3x-2}$的定义域为:(-∞,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞).
点评 本题考查了函数的定义域及其求法,考查不等式的解法,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com