精英家教网 > 高中数学 > 题目详情
7.下列函数的定义域:
(1)f(x)=$\frac{\sqrt{x+3}}{x-5}$;
(2)f(x)=$\frac{\root{3}{4x+8}}{3x-2}$.

分析 (1)要使原函数f(x)=$\frac{\sqrt{x+3}}{x-5}$有意义,则根式内部的代数式大于等于0且分式的分母不为0,求x即可得答案;
(2)要使原函数f(x)=$\frac{\root{3}{4x+8}}{3x-2}$有意义,则分式的分母不为0,求x即可得答案.

解答 解:(1)要使原函数f(x)=$\frac{\sqrt{x+3}}{x-5}$有意义;
则$\left\{\begin{array}{l}{x+3≥0}\\{x-5≠0}\end{array}\right.$,
∴x≥-3且x≠5.
∴f(x)=$\frac{\sqrt{x+3}}{x-5}$的定义域为:[-3,5)∪(5,+∞);
(2)要使原函数f(x)=$\frac{\root{3}{4x+8}}{3x-2}$有意义,
则3x-2≠0,
∴$x≠\frac{2}{3}$.
∴f(x)=$\frac{\root{3}{4x+8}}{3x-2}$的定义域为:(-∞,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞).

点评 本题考查了函数的定义域及其求法,考查不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x-1)=x2-4x.
(Ⅰ)求函数f(x)及f(2x+1)的解析式;
(Ⅱ)(i)若f(x)在区间[2m,m+1]上不具有单调性,求实数m的取值范围;
(ii)若对于任意的x0∈[0,2],总存在t∈{x|$\frac{2a}{x+5+a}$≥1},使得f(2x0+1)=t成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}的前n项和Sn=2an-1;
(1)求数列{an}的通项公式;
(2)若bn=3n-2,求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.把下列函数简化成y=Asin(ωx+φ)+B或y=Acos(ωx+φ)+B
(1)f(x)=sinx+sin($\frac{π}{2}$-x)
(2)函数y=2cos2(x-$\frac{π}{4}$)-1
(3)f(x)=sinωx+sin(ωx-$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2sin2x+2$\sqrt{3}$sinx•sin(x+$\frac{π}{2}$)(ω>0).
(1)求f(x)的最小正周期;
(2)求函数f(x)在区间[0,$\frac{2π}{3}$]上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.比较下列各组数的大小.
(1)2${\;}^{\frac{3}{2}}$,5${\;}^{\frac{3}{2}}$,($\frac{1}{2}$)3
(2)($\frac{3}{4}$)${\;}^{-\frac{1}{2}}$,($\frac{3}{4}$)${\;}^{-\frac{1}{3}}$,($\frac{3}{2}$)${\;}^{-\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知Sn=$\frac{1}{5}$+$\frac{2}{{5}^{2}}$+$\frac{1}{{5}^{3}}$+$\frac{2}{{5}^{4}}$+…+$\frac{1}{{5}^{2n-1}}$+$\frac{2}{{5}^{2n}}$(n∈N*),求$\underset{lim}{n→∞}$Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列关于子集、真子集说法正确的个数是(  )
①空集是任何一个集合的子集;
②空集是任何一个非空集合的真子集;
③任何一个集合是它本身的子集;
④任何一个集合是它本身的真子集;
⑤若一个集合只有两个子集,则该集合只有一个元素.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=3sin$\frac{x}{3}$+4cos$\frac{x}{3}$的最大值是(  )
A.5B.-5C.6D.-6

查看答案和解析>>

同步练习册答案