精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= ,若f(x)的值域为R,是实数a的取值范围是

【答案】(﹣∞,﹣1]∪[2,+∞)
【解析】解:函数f(x)= , 当x>2时,f(x)=2x+a,在(2,+∞)上为增函数,f(x)∈(4+a,+∞);
当x≤2时,f(x)=x+a2 , 在(﹣∞,2]上为增函数,f(x)∈(﹣∞,2+a2];
若f(x)的值域为R,则(﹣∞,2+a2]∪(4+a,+∞)=R,
则2+a2≥4+a,
即a2﹣a﹣2≥0
解得a≤﹣1,或a≥2,
则实数a的取值范围是(﹣∞,﹣1]∪[2,+∞).
所以答案是:(﹣∞,﹣1]∪[2,+∞).
【考点精析】解答此题的关键在于理解函数的值域的相关知识,掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,PA⊥平面ABCD,AD∥BC,AD=2BC,AB⊥BC,点E为PD中点.
(1)求证:AB⊥PD;
(2)求证:CE∥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosx,﹣1), =( sinx,cos2x),设函数f(x)= +
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈(0, )时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,半径为1,圆心角为 的圆弧 上有一点C.
(1)若C为圆弧AB的中点,点D在线段OA上运动,求| |的最小值;
(2)若D,E分别为线段OA,OB的中点,当C在圆弧 上运动时,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑,如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体毛坯的三视图,第一次切削,将该毛坯得到一个表面积最大的长方体,第二次切削沿长方体的对角面刨开,得到两个三棱柱,第三次切削将两个三棱柱分别沿棱和表面的对角线刨开得到两个鳖臑和两个阳马,则阳马与鳖臑的体积之比为(
A.3:1
B.2:1
C.1:1
D.1:2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求证:
(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的公比q>1,且a1+a3=20,a2=8. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设 ,Sn是数列{bn}的前n项和,对任意正整数n不等式 恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若cosα=﹣ ,α是第三象限的角,则
(1)求sin(α+ )的值;
(2)求tan2α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l在x轴上的截距比在y轴上的截距大1,且过点(6,-2),求直线l的方程.

查看答案和解析>>

同步练习册答案