精英家教网 > 高中数学 > 题目详情
已知是奇函数,
(1)求常数a的值;  
(2)求f(x)的定义域和值域;
(3)讨论f(x)的单调性并证明.
【答案】分析:(1)利用奇函数的定义f(-x)=-f(x),即可求得a值;
(2)先把函数f(x)变形为f(x)==1-,利用基本函数的值域可求函数f(x)的值域,f(x)的定义域易求得;
(3)设x1<x2,通过作差比较f(x1)与f(x2)的大小,再利用函数的单调性的定义可作出判断.
解答:解:(1)因为是奇函数,
所以f(-x)=-f(x),即=-,也即=-
所以=a+1=0,
所以a=-1.
(2)由(1)知,f(x)==1-
其定义域为R.
因为4x>0,所以0<<2,-1<1-<1,
即-1<f(x)<1.
所以函数f(x)的值域为(-1,1).
(3)所以函数f(x)在R上为增函数.
证明:设x1<x2
则f(x1)-f(x2)=(1-)-(1-
=-=
因为x1<x2,所以+1>0,+1>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2),
所以函数f(x)在R上为增函数.
点评:本题考查函数的奇偶性、单调性,属基础题,定义是解决该类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数学公式是奇函数.
(1)求a的值;   (2)判断函数f(x)在(-1,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数,已知 是奇函数。

 (1)求的值.

 (2)求的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数,已知 是奇函数。

  (1)求的值.(2)求的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省盐城中学高一(上)期中数学试卷(解析版) 题型:解答题

已知是奇函数.
(1)求a的值;     
(2)判断函数f(x)在(-1,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源:岳阳市2010届高三第四次质检考试(数学文)试题 题型:解答题

(本小题满分12分)

设函数,已知 是奇函数。

   (1)求的值。

   (2)求的单调区间与极值。

 

查看答案和解析>>

同步练习册答案