精英家教网 > 高中数学 > 题目详情

如图,已知椭圆,直线的方程为,过右焦点的直线与椭圆交于异于左顶点两点,直线交直线分别于点

(Ⅰ)当时,求此时直线的方程;

(Ⅱ)试问两点的纵坐标之积是否为定值?

若是,求出该定值;若不是,请说明理由.

解:(Ⅰ)①当直线的斜率不存在时,由可知方程为

代入椭圆

 不满足-----------------2分

②当直线的斜率存在时,设方程为

代入椭圆-----------------------4分

-------------------------5分

-        

故直线的方程; ------------------------7分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点.(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点p为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.
(1)求椭圆的标准方程;
(2)设直线PF1、PF2的斜线分别为k1、k2.①证明:
1
k1
-
3
k2
=2
;②问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(
2
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,如图,已知椭圆C:
x24
+y2
=1的上、下顶点分别为A、B,点P在椭圆C上且异于点A、B,直线AP、BP与直线l:y=-2分别交于点M、N;
(I)设直线AP、BP的斜率分别为k1,k2求证:k1•k2为定值;
(Ⅱ)求线段MN长的最小值;
(Ⅲ)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点为F1(1,0)、F2(-1,0),离心率为
2
2
,过点A(2,0)的直线l交椭圆C于M、N两点.
(1)求椭圆C的方程;
(2)①求直线l的斜率k的取值范围;
②在直线l的斜率k不断变化过程中,探究∠MF1A和∠NF1F2是否总相等?若相等,请给出证明,若不相等,说明理由.

查看答案和解析>>

同步练习册答案