精英家教网 > 高中数学 > 题目详情
在正三棱柱ABC-A1B1C1(底面三角形ABC是正三角形的直棱柱)中,点D,E分别是BC,B1C1的中点,BC1∩B1D=F,BC=
2
BB1
.求证:
(1)平面A1EC∥平面AB1D;
(2)平面A1BC1⊥平面AB1D.
分析:(1)由点D,E分别是BC,B1C1的中点,知A1E∥AD,EC∥B1D,由此能证明平面A1EC∥平面AB1D.
(2)由△ABC是正三角形,点D是BC的中点,知AD⊥BC,由平面ABC⊥平面BCC1B1,知AD⊥BC1,由此能够证明平面A1BC1⊥平面AB1D.
解答:证明:(1)∵点D,E分别是BC,B1C1的中点,
∴A1E∥AD,EC∥B1D,
∴A1E∥平面AB1D,
又∵A1E∩EC=E,∴平面A1EC∥平面AB1D.
(2)∵△ABC是正三角形,点D是BC的中点,
∴AD⊥BC,
又∵平面ABC⊥平面BCC1B1
∴AD⊥平面BCC1B1
∴AD⊥BC1
又∵点D是BC的中点,BC=
2
BB1

BD=
2
2
BB1
BB1=
2
2
B1C1

BD
BB1
=
BB1
B1C1
,∴△BDB1∽△B1BC1
故∠BDB1=∠B1BC1,即∠BDF=∠B1BF,
∠BDF+∠DBF=∠B1BF+∠DBF=900,∠BFD=90°,
∴BF⊥B1D,即BC1⊥B1D,从而BC1⊥平面AB1D.
又BC1?平面A1BC1,所以平面A1BC1⊥平面AB1D.
点评:本题考查平面与平面平行的证明,考查平面与平面垂直的证明,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,AA1=AB,D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求证:平面A1BD⊥平面ACC1A1
(3)求二面角A-A1B-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,所有棱的长度都是1,M是BC边的中点,P是AA1边上的点,且PA=
6
4

(1)求:点P到棱BC的距离;
(2)问:在侧棱CC1上是否存在点N,使得异面直线AB1与MN所成角为45°?若存在,请说明点N的位置;若不存在,请说明理由;
(3)定义:如果平面α经过线段AA′的中点,并与线段AA′垂直,则称点A关于平面α的对称点为点A′.设点A关于平面PBC的对称点为A′,求:点A′到平面AMC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A'B'C'中,AB=2,若二面角C'-AB-C的大小为60°,则点C到平面ABC'的距离为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正三棱柱ABC-ABC中,AB=3,高为2,则它的外接球上A、B两点的球面距离为______.

查看答案和解析>>

科目:高中数学 来源:2011年四川省绵阳中学高考适应性检测数学试卷(理科)(解析版) 题型:填空题

如图,在正三棱柱ABC-A'B'C'中,AB=2,若二面角C'-AB-C的大小为60°,则点C到平面ABC'的距离为   

查看答案和解析>>

同步练习册答案