分析 设P(x0,y0),(0<x0<a),则$\frac{{y}_{0}}{{x}_{0}-a}$=$tan(π-\frac{π}{6})$,可得${y}_{0}=-\frac{\sqrt{3}}{3}({x}_{0}-a)$.又$\frac{{x}_{0}^{2}}{{a}^{2}}+\frac{{y}_{0}^{2}}{{b}^{2}}$=1,可得(a2+3b2)${x}_{0}^{2}$-2a3x0+a4-3a2b2=0,由题意可得0<x0<a,△>0,a4-3a2b2>0,解得:$\frac{{b}^{2}}{{a}^{2}}$的范围,利用e=$\frac{c}{a}=\sqrt{1-(\frac{b}{a})^{2}}$即可得出.
解答 解:设P(x0,y0),(0<x0<a),则$\frac{{y}_{0}}{{x}_{0}-a}$=$tan(π-\frac{π}{6})$,可得${y}_{0}=-\frac{\sqrt{3}}{3}({x}_{0}-a)$.
又$\frac{{x}_{0}^{2}}{{a}^{2}}+\frac{{y}_{0}^{2}}{{b}^{2}}$=1,可得(a2+3b2)${x}_{0}^{2}$-2a3x0+a4-3a2b2=0,
∵0<x0<a,∴△=4a6-4(a2+3b2)(a4-3a2b2)>0,a4-3a2b2>0,
解得:$0<\frac{{b}^{2}}{{a}^{2}}<\frac{1}{3}$,
∴e=$\frac{c}{a}=\sqrt{1-(\frac{b}{a})^{2}}$>$\sqrt{1-\frac{1}{3}}$=$\frac{\sqrt{6}}{3}$,又e∈(0,1),
∴$\frac{\sqrt{6}}{3}<e<1$.
∴该椭圆离心率的取值范围是$(\frac{\sqrt{6}}{3},1)$.
故答案为:$(\frac{\sqrt{6}}{3},1)$.
点评 本题考查了椭圆的定义及其标准方程、直线与椭圆相交与判别式的关系、不等式解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{4}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=$\sqrt{{x}^{2}}$和y=($\sqrt{x}$)2 | B. | y=lg(x2-1)和y=lg(x+1)+lg(x-1) | ||
| C. | y=logax2和y=2logax | D. | y=x和y=logaax |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x>-1} | B. | {x|-1<x≤1} | C. | {x|-1<x<2} | D. | {x|1<x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\frac{1}{x}$ | B. | f(x)=-x2 | C. | f(x)=-tanx | D. | f(x)=|sinx| |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$个单位 | B. | $\frac{π}{3}$个单位 | C. | $\frac{π}{4}$个单位 | D. | $\frac{π}{12}$个单位 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com