【题目】已知方程
的曲线是圆
.
(1)求实数
的取值范围;
(2)若直线
与圆
相交于
、
两点,且
(
为坐标原点),求实数
的值;
(3)当
时,设
为直线
上的动点,过
作圆
的两条切线
、
,切点分别为
、
,求四边形
面积的最小值.
【答案】(1)
(2)实数
的值等于
(3)四边形
面积的最小值为![]()
【解析】
(1)圆方程化为标准方程,即可求解;
(2)联立直线与圆方程,消元整理为一元二次方程,进一步根据根与系数的关系以及向量垂直的充要条件,即可求解;
(3)
为圆的半径),要求四边形
面积的最小值,只需求出
长最小,即可求解.
(1)解:由
,
得
.
由
解得
.
所以所求实数
的取值范围是
.
(2)解:联立
,
得
.
由
,解得
.
设
,则
,
,
且
,
即
.
因为
,则得
,
所以
①
代入①得
,
解得
,符合题意.
所以所求实数
的值等于
.
(3)解法一:当
时,圆
的方程为
,
即
,所以圆
的圆心坐标是
,半径是
.
由于
、
为圆
的两条切线,
所以
.
又
,
而
的最小值为点
到直线
的距离
.
因为
,所以
.
因此四边形
面积的最小值是
.
解法二:当
时,圆
的方程是
,
即
,所以圆
的圆心坐标是
,半径是
.
由于
、
为圆
的两条切线,
所以
.
又
.
设点
的坐标为
,则
,即
,
所以
,即
,
即
,即
.
当
,
时,
.
所以
.
因此四边形
面积的最小值为![]()
科目:高中数学 来源: 题型:
【题目】(本题满分12分)已知椭圆
,直线
不过原点
且不平行于坐标轴,
与
有两个交点
,
,线段
的中点为
.
(Ⅰ)证明:直线
的斜率与
的斜率的乘积为定值;
(Ⅱ)若
过点
,延长线段
与
交于点
,四边形
能否为平行四边形?若能,求此时
的斜率,若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为
,且过点
.点M(3,m)在双曲线上.
(1)求双曲线的方程;
(2)求证:
;
(3)求△F1MF2的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】团体购买公园门票,票价如下表:
购票人数 | 1~50 | 51~100 | 100以上 |
门票价格 | 13元/人 | 11元/人 | 9元/人 |
现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b
,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数
____;
____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块半径为
,圆心角为
的扇形钢板,需要将它截成一块矩形钢板,分别按图1和图2两种方案截取(其中方案二中的矩形关于扇形的对称轴对称).
![]()
图1:方案一 图2:方案二
(1)求按照方案一截得的矩形钢板面积的最大值;
(2)若方案二中截得的矩形
为正方形,求此正方形的面积;
(3)若要使截得的钢板面积尽可能大,应选择方案一还是方案二?请说明理由,并求矩形钢板面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点
,
分别是椭园C:
的左、右焦点,且椭圆C上的点到
的距离的最小值为
,点M,N是椭圆C上位于x轴上方的两点,且向量
与向量
平行.
求椭圆C的方程;
当
时,求
的面积;
当
时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心为坐标原点,焦点在坐标轴上,且经过点M(4,1),N(2,2).
(1)求椭圆C的方程;
(2)若斜率为1的直线与椭圆C交于不同的两点,且点M到直线l的距离为
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点E到点A(2,0)与点B(-2,0)的直线斜率之积为-
,点E的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点D(l,0)作直线l与曲线C交于P,Q两点,且
=-
.求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com