精英家教网 > 高中数学 > 题目详情

【题目】函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是(
A.5,﹣15
B.5,﹣4
C.﹣4,﹣15
D.5,﹣16

【答案】A
【解析】解:由题意y'=6x2﹣6x﹣12 令y'>0,解得x>2或x<﹣1
故函数y=2x3﹣3x2﹣12x+5在(0,2)减,在(2,3)上增
又y(0)=5,y(2)=﹣15,y(3)=﹣4
故函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是5,﹣15
故选A
【考点精析】认真审题,首先需要了解函数的最大(小)值与导数(求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋子里有编号为的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.

甲说:我无法确定.”

乙说:我也无法确定.”

甲听完乙的回答以后,甲又说:我可以确定了.”

根据以上信息, 你可以推断出抽取的两球中

A. 一定有3号球 B. 一定没有3号球 C. 可能有5号球 D. 可能有6号球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数x,y满足 ,则μ= 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为等差数列,前n项和为 是首项为2的等比数列,且公比大于0, , .

(Ⅰ)求的通项公式;

(Ⅱ)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是(
A.众数
B.平均数
C.中位数
D.标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 M与圆N:(x﹣ 2+(y+ 2=r2关于直线y=x对称,且点D(﹣ )在圆M上.
(1)判断圆M与圆N的公切线的条数;
(2)设P为圆M上任意一点,A(﹣1, ),B(1, ),P,A,B三点不共线,PG为∠APB的平分线,且交AB于G,求证:△PBG与△APG的面积之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理中是演绎推理的序号为(
A.由金、银、铜、铁可导电,猜想:金属都可导电
B.猜想数列 {an}的通项公式为 (n∈N+
C.半径为r圆的面积S=πr2 , 则单位圆的面积S=π
D.由平面直角坐标系中圆的方程为(x﹣a)2+(y﹣b)2=r2 , 推测空间直角坐标系中球的方程为(x﹣a)2+(y﹣b)2+(z﹣c)2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线与抛物线y24x相交于不同的AB两点,O为坐标原点

(1) 如果直线过抛物线的焦点且斜率为1,求的值;

2)如果,证明:直线必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的一个焦点是 为坐标原点,且椭圆短轴的两个三等分点与一个焦点构成正三角形,过点的直线交椭圆于点.

(1)求椭圆的方程;

(2)设为椭圆上一点,且满足,当,求实数的取值范围.

查看答案和解析>>

同步练习册答案