精英家教网 > 高中数学 > 题目详情
给出下列命题:
①若平面α内的直线l垂直于平面β内的任意直线,则α⊥β;
②若平面α内的任一直线都平行于平面β,则α∥β;
③若平面α垂直于平面β,直线l在平面α内,则l⊥β;
④若平面α平行于平面β,直线l在平面α内,则l∥β.
其中正确命题的个数是(  )
A.4B.3C.2D.1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)如图,在三棱柱中,分别为的中点.
(1)求证:∥平面; (2)求证:平面
(3)直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,底面ABCD是菱形,∠BADAB=2,PA=1,PA⊥平面ABCDEPC的中点,FAB的中点.

(1)求证:BE∥平面PDF
(2)求证:平面PDF⊥平面PAB
(3)求三棱锥PDEF的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分12分)
一个几何体是由圆柱三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中

(1)求证:
(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面两两互相垂直,点,点的距离都是,点上的动点,满足的距离是到到点距离的倍,则点的轨迹上的点到的距离的最小值是
A.  B.   
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱中,是侧棱的中点.

(Ⅰ)证明:
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

二面角αlβ等于120°,AB是棱l上两点,ACBD分别在半平面αβ内,AClBDl,且AB=AC=BD=1,则CD的长等于                                             (  )

A.                           B.
C.2                             D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:

①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.
其中正确的有________(把所有正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长均为2的正四棱锥中,点E为PC的中点,则下列命题正确的是(  )(正四棱锥即底面为正方形,四条侧棱长相等,顶点在底面上的射影为底面的中心的四棱锥)
A.,且直线BE到面PAD的距离为
B.,且直线BE到面PAD的距离为
C.,且直线BE与面PAD所成的角大于
D.,且直线BE与面PAD所成的角小于

查看答案和解析>>

同步练习册答案