精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
一个几何体是由圆柱三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中

(1)求证:
(2)求二面角的平面角的大小.
(1)在平面上的射影为,而,由三垂线定理得,…4分
(2)由已知得:………………6分
点作,连结,由,故为所求二面角的平面角
 故,所求二面角平面角的大小为…12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,PA垂直于矩形ABCD所在的平面,PD=PAEF分别是ABPD的中点。

(1)求证:AF∥平面PCE
(2)求证:平面PCE⊥平面PCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设、是两条不同的直线,、是两个不同的平面,给出下列5个命题:
①若,,则 ;
②若,,,则;
③若 ,,,则;
④若 ,,,则;
⑤若,,,则.
其中正确命题的个数是
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设有三个命题,
甲:底面是平行四边形的四棱柱是平行六面体;
乙:底面是矩形的平行六面体是长方体;
丙:直四棱柱是直平行六面体.
以上命题中,真命题的个数有
(  )
A.0个B.1个
C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥P-ABC中,PA=PC,∠APC=∠ACB=90°,∠BAC=30°,平面PAC⊥平面ABC.

(1)求证:平面PAB⊥平面PBC;
(2)若PA=2,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直, 
是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°
(1)求证:EF⊥平面BCE;
(2)设线段CD的中点为P,在直线AE上是否存在一点M,使得PM//平面BCE?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用半径为R的半圆形铁皮卷成一个圆锥桶,那么这个圆锥的高是  ▲  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列命题:
①若平面α内的直线l垂直于平面β内的任意直线,则α⊥β;
②若平面α内的任一直线都平行于平面β,则α∥β;
③若平面α垂直于平面β,直线l在平面α内,则l⊥β;
④若平面α平行于平面β,直线l在平面α内,则l∥β.
其中正确命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四面体中,共顶点的三条棱两两互相垂直,且若四面体的四个顶点在一个球面上,则B,D的球面距离为_ ___   __。               

查看答案和解析>>

同步练习册答案