精英家教网 > 高中数学 > 题目详情
设、是两条不同的直线,、是两个不同的平面,给出下列5个命题:
①若,,则 ;
②若,,,则;
③若 ,,,则;
④若 ,,,则;
⑤若,,,则.
其中正确命题的个数是
A.1B.2C.3D.4
B

根据空间面面垂直、平行的判定和性质,以及线面垂直、平行的判定与性质可以证出②③是真命题,而且①④⑤缺少条件,是假命题.由此可得本题的答案.
解:对于①,m⊥α,l⊥β,没有指出平面α、β的位置关系,也没有指出m、l的位置关系,
因此不能确定l与α的位置关系,故①不正确;
对于②,由m⊥α,l∥m,得l⊥α,再结合l?β,可得α⊥β,故②正确;
对于③,由α∥β,l⊥α,得l⊥β,结合m∥β,可得l⊥m,故③正确;
对于④,由α∥β,l∥α,得l∥β或l?β,结合m?β,得l与m平行、相交或异面都有可能,故④不正确;
对于⑤,若α⊥β,α∩β=l,m⊥l,当m是α内的直线时有m⊥β,但条件中没有“m?α”这一条,
不一定有m⊥β,故⑤不正确.
因此正确命题为②③,共2个
故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,在三棱锥P—ABC中,∠APB=∠BPC=∠APC=90°,M在△ABC内,∠MPA=60°,∠MPB=45°,则∠MPC的度数为(  )
A.30°B.45°C. 75°D.60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知正方体ABCD-A1B1C1D1, O是底ABCD对角线的交点。


(2)A1C⊥面AB1D1
(3)求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱,的中点,作于点
(Ⅰ)证明
(Ⅱ)证明

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面截一球面得圆,过圆心且与二面角的平面截该球面得圆,若该球面的半径为4,圆的面积为,则圆的面积为
(A)          (B)           (c)            (D)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分12分)
一个几何体是由圆柱三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图所示,其中

(1)求证:
(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面为直角梯形,底面,且的中点。
(Ⅰ)证明:面
(Ⅱ)求所成角的余弦值;
(Ⅲ)求面与面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:

②∠BAC=60°;
③三棱锥D—ABC是正三棱锥;
④平面ADC的法向量和平面ABC的法向量互相垂直.
其中正确的是________(填上正确答案的序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

二面角αlβ等于120°,AB是棱l上两点,ACBD分别在半平面αβ内,AClBDl,且AB=AC=BD=1,则CD的长等于                                             (  )

A.                           B.
C.2                             D.

查看答案和解析>>

同步练习册答案