精英家教网 > 高中数学 > 题目详情
(本小题满分13分)已知正方体ABCD-A1B1C1D1, O是底ABCD对角线的交点。


(2)A1C⊥面AB1D1
(3)求


证明:(1)连结,设
连结是正方体  
是平行四边形     2分
分别是的中点,
是平行四边形                               

                                       4分
(2)                    
,                       6分
                                    
同理可证,                             

                                9分
(3)直线AC与平面所成的角实际上就是正四面体ACB1D1的一条棱与一个面所成的角,余弦值为,从而正切值为。             13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,PA垂直于矩形ABCD所在的平面,PD=PAEF分别是ABPD的中点。

(1)求证:AF∥平面PCE
(2)求证:平面PCE⊥平面PCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是矩形,,AB=2.M为PD的中点.求直线PC与平面ABM所成的角的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(14分)如图,圆柱内有一个三棱柱,三棱柱的 底面为圆柱
底面的内接三角形,且是圆的直径。
(I)证明:平面平面
(II)设,在圆内随机选取一点,记该点取自三棱柱内的概率为
(i)当点在圆周上运动时,求的最大值;
(ii)如果平面与平面所成的角为。当取最大值时,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在下面四个平面图形中,哪几个是正四面体的展开图,其序号是_________.
 
(1)              (2)              (3)                    (4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设、是两条不同的直线,、是两个不同的平面,给出下列5个命题:
①若,,则 ;
②若,,,则;
③若 ,,,则;
④若 ,,,则;
⑤若,,,则.
其中正确命题的个数是
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直, 
是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°
(1)求证:EF⊥平面BCE;
(2)设线段CD的中点为P,在直线AE上是否存在一点M,使得PM//平面BCE?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四面体中,共顶点的三条棱两两互相垂直,且若四面体的四个顶点在一个球面上,则B,D的球面距离为_ ___   __。               

查看答案和解析>>

同步练习册答案