精英家教网 > 高中数学 > 题目详情
(14分)如图,圆柱内有一个三棱柱,三棱柱的 底面为圆柱
底面的内接三角形,且是圆的直径。
(I)证明:平面平面
(II)设,在圆内随机选取一点,记该点取自三棱柱内的概率为
(i)当点在圆周上运动时,求的最大值;
(ii)如果平面与平面所成的角为。当取最大值时,求的值。
解:(Ⅰ)因为平面ABC,平面ABC,所以
因为AB是圆O直径,所以,又,所以平面
平面,所以平面平面
(Ⅱ)(i)设圆柱的底面半径为,则AB=,故三棱柱的体积为
=
又因为
所以=,当且仅当时等号成立,
从而,而圆柱的体积
=当且仅当,即时等号成立,
所以的最大值是
(ii)由(i)可知,取最大值时,,于是以O为坐标原点,建立空间直角坐标系(如图),则C(r,0,0),B(0,r,0),0,r,2r),
因为平面,所以是平面的一个法向量,
设平面的法向量
,故
得平面的一个法向量为,因为
所以
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离为hi(i=1,2,3,4),若k,则(ihi)=.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为hi(i=1,2,3,4),若K,则(ihi)=(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCD-A1B1C1D1中,S,E,G分别是B1D1,BC,SC的中点.
求证:直线EG∥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)如图,在三棱柱中,分别为的中点.
(1)求证:∥平面; (2)求证:平面
(3)直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在三棱锥P—ABC中,∠APB=∠BPC=∠APC=90°,M在△ABC内,∠MPA=60°,∠MPB=45°,则∠MPC的度数为(  )
A.30°B.45°C. 75°D.60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为空间四点.在中,.等
边三角形为轴运动.
(Ⅰ)当平面平面时,求
(Ⅱ)当转动时,是否总有?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知正方体ABCD-A1B1C1D1, O是底ABCD对角线的交点。


(2)A1C⊥面AB1D1
(3)求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面两两互相垂直,点,点的距离都是,点上的动点,满足的距离是到到点距离的倍,则点的轨迹上的点到的距离的最小值是
A.  B.   
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

二面角αlβ等于120°,AB是棱l上两点,ACBD分别在半平面αβ内,AClBDl,且AB=AC=BD=1,则CD的长等于                                             (  )

A.                           B.
C.2                             D.

查看答案和解析>>

同步练习册答案