精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,其中 .

1)当时,求在点处切线的方程;

2)若函数在区间上单调递增,求实数的取值范围;

3)记,求证: .

【答案】(1);(2);(3)证明见解析.

【解析】试题分析:1根据导数的几何意义,求出切线斜率,即可写出切线;2根据单调递增可知函数导数在上大于等于零恒成立分离参数即可求出a的取值范围;(3)写出,求导数,利用导数求其最小值即可证明.

试题解析:

1)解:当时,

,此时切点为

的方程为

2解:,函数在区间上单调递增,

在区间上恒成立,

上恒成立,则

,则,当时,

3证明:,则

,则

显然在区间上单调递减,在区间上单调递增,则

,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是(
A.
B.y=ex
C.y=lg|x|
D.y=﹣x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于两个定义域相同的函数f(x),g(x),若存在实数m、n使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和个g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1由函数f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范围;
(3)利用“基函数f(x)=log4(4x+1),g(x)=x﹣1”生成一个函数h(x),使之满足下列件:①是偶函数;②有最小值1;求函数h(x)的解析式并进一步研究该函数的单调性(无需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,O是坐标原点,且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若点Q的坐标是 ,求 的值;
(Ⅱ)设函数 ,求f(α)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD的周长为y.
(1)求出y关于x的函数f(x)的解析式;
(2)求y的最大值,并指出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形ABCD满足AD∥BC,BA=AD=DC= BC=a,E是BC的中点,将△BAE沿着AE翻折成△B1AE,使面B1AE⊥面AECD,F,G分别为B1D,AE的中点.

(1)求三棱锥E﹣ACB1的体积;
(2)证明:B1E∥平面ACF;
(3)证明:平面B1GD⊥平面B1DC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,底面为菱形,且 是边长为的正三角形,且平面平面,点的中点.

(1)证明: 平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1﹣ 在R上是奇函数.
(1)求a;
(2)对x∈(0,1],不等式sf(x)≥2x﹣1恒成立,求实数s的取值范围;
(3)令g(x)= ,若关于x的方程g(2x)﹣mg(x+1)=0有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列选项中,说法正确的个数是( )

①命题“”的否定为“”;

②命题“在中, ,则”的逆否命题为真命题;

③设是公比为的等比数列,则“”是“为递增数列”的充分必要条件;

④若统计数据的方差为,则的方差为

⑤若两个随机变量的线性相关性越强,则相关系数绝对值越接近1.

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

同步练习册答案