精英家教网 > 高中数学 > 题目详情
设集合A={x|x2-a<0},B={x|x<2},若A∩B=A,则实数a的取值范围是(  )
分析:先根据A∩B=A得A⊆B,将集合A整理后借助于数轴,即可得到a的范围.
解答:解:由于A∩B=A,得A⊆B,
①当A=∅时,a≤0,显然满足A⊆B;
②当A≠∅时,则集合A={x|x2-a<0}={x|-
a
<x<
a
,a>0},
由于A⊆B,则
a
≤2,
解得 0<a≤4.
综上,实数a的取值范围是a≤4.
故答案为:C
点评:本题考查的是集合与集合间的运算问题.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|x2=1},B={x|x是不大于3的自然数},A⊆C,B⊆C,则集合C中元素最少有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2+2x-a=0,x∈R},若A是非空集合,则实数a的取值范围是
[-1,+∞)
[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•海淀区一模)设集合A={x|x2>x},集合B={x|x>0},则集合A∩B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2<2x},B={x|log2x>0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|x2+2x-3>0},B={x|x<3},则A∩B=(  )

查看答案和解析>>

同步练习册答案