精英家教网 > 高中数学 > 题目详情
命题:已知a、b为实数,若x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.
【答案】分析:原命题中,a、b为实数是前提,条件是x2+ax+b≤0有非空解集(即不等式有解),结论是a2-4b≥0,由四种命题的关系可得出其他三种命题.
解答:解:逆命题:已知a、b为实数,若a2-4b≥0,则x2+ax+b≤0有非空解集.
否命题:已知a、b为实数,若x2+ax+b≤0没有非空解集,则a2-4b<0.
逆否命题:已知a、b为实数,若a2-4b<0,则x2+ax+b≤0没有非空解集.
原命题、逆命题、否命题、逆否命题均为真命题.
点评:本题以复合命题的真假为载体考查二次方程的解的问题.熟练掌握四种命题的定义,复合命题的真值表,特称命题的否定的方法是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题(i为虚数单位)中正确的是
①已知a,b∈R,则a=b是(a-b)+(a+b)i为纯虚数的充要条件;
②当z是非零实数时,|z+
1
z
|≥2恒成立;
③复数z=(1-i)3的实部和虚部都是-2;
④如果|a+2i|<|-2+i|,则实数a的取值范围是-1<a<1;
⑤复数z=1-i,则
1
z
+z=
3
2
+
1
2
i
其中正确的命题的序号是
②③④
②③④
.(注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题:
①已知p、q为两个命题,若“p∨q”为假命题,则“?p∧?q”为真命题;
②已知随机变量X服从正态分布N(3,1),且P(2≤x≤4)=0.6826,则P(x>4)=0.1587;
③“m<
1
4
”是“一元二次方程x2+x+m=0有实根”的必要不充分条件;
④命题“若a>b,则2a>2b-1”的否命题为:若a≤b,则2a≤2b-1.
其中不正确的命题个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:

的充要条件;

② 已知A、B是双曲线实轴的两个端点,MN是双曲线上关于x轴对称的两点,直线AMBN的斜率分别为k1k2,且的最小值为2,则双曲线的离心率e=

③ 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是

④ 一个圆形纸片,圆心为OF为圆内一定点,M是圆周上一动点,把纸片折叠使MF重合,然后抹平纸片,折痕为CD,设CDOM交于P,则P的轨迹是椭圆。

其中真命题的序号是                 。(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省吉林市高三(下)期末数学试卷(理科)(解析版) 题型:选择题

已知下列命题:
①已知p、q为两个命题,若“p∨q”为假命题,则“¬p∧¬q”为真命题;
②已知随机变量X服从正态分布N(3,1),且P(2≤x≤4)=0.6826,则P(x>4)=0.1587;
③“”是“一元二次方程x2+x+m=0有实根”的必要不充分条件;
④命题“若a>b,则2a>2b-1”的否命题为:若a≤b,则2a≤2b-1.
其中不正确的命题个数为( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:

的充要条件;

② 已知A、B是双曲线实轴的两个端点,MN是双曲线上关于x轴对称的两点,直线AMBN的斜率分别为k1k2,且的最小值为2,则双曲线的离心率e=

③ 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是

④ 一个圆形纸片,圆心为OF为圆内一定点,M是圆周上一动点,把纸片折叠使MF重合,然后抹平纸片,折痕为CD,设CDOM交于P,则P的轨迹是椭圆。

其中真命题的序号是                 。(填上所有真命题的序号)

查看答案和解析>>

同步练习册答案