精英家教网 > 高中数学 > 题目详情
已知下列命题:
①已知p、q为两个命题,若“p∨q”为假命题,则“?p∧?q”为真命题;
②已知随机变量X服从正态分布N(3,1),且P(2≤x≤4)=0.6826,则P(x>4)=0.1587;
③“m<
1
4
”是“一元二次方程x2+x+m=0有实根”的必要不充分条件;
④命题“若a>b,则2a>2b-1”的否命题为:若a≤b,则2a≤2b-1.
其中不正确的命题个数为(  )
分析:根据复合命题真假的规则判断出①正确;根据正态分布的概率规则判断出②正确;根据二次方程有实根的充要条件判断出③不正确;根据四种命题的形式判断出④正确.
解答:解:对于①,因为“p∨q”为假命题,所以命题p,q都是假命题,所以¬p,¬q都是真命题,所以“?p∧?q”为真命题,故①正确;
对于②,因为P(2≤x≤4)=0.6826,所以P(3≤x≤4)=0.3413,所以P(x>4)=0.5-0.3413=0.1587,故②正确;
对于③,因为“一元二次方程x2+x+m=0有实根”充要条件是△=1-4m≥0即m≤
1
4

因为“m<
1
4
”能推出“m≤
1
4
,”成立,反之推不出,所以“m<
1
4
”是“一元二次方程x2+x+m=0有实根”的充分不必要条件,故③错;
对于④,若a>b,则2a>2b-1”的否命题为:若a≤b,则2a≤2b-1,所以④正确;
故答案为B.
点评:本题考查复合命题的真值表、四种命题的形式及有关充要条件的定义,属于一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①若
a
2
+
b
2
=0
,则
a
=
b
=
0

②若A(x1,y1),B(x2,y2),则
1
2
AB
=(
x1+x2
2
y1+y2
2
)

③已知
a
b
c
是三个非零向量,若
a
+
b
=
0
;,则|
a
c
|=|
b
c
|

④已知λ1>0,λ2>0,
e1
e2
是一组基底,
a
1
e1
2
e2
,则
a
e1
不共线,
a
e2
也不共线;
a
b
共线?
a
b
=|
a
||
b
|

其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中所有正确的序号是
①④
①④

①函数f(x)=ax-1+3(a>0且a≠1)的图象一定过定点P(1,4);
②函数f(x-1)的定义域是(1,3),则函数f(x)的定义域为(2,4);
③已知f(x)=x5+ax3+bx-8,且f(-2)=8,则f(2)=-8;
④f(x)=
1
1-2x
-
1
2
为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①经过空间一点一定可作一条直线与两异面直线都垂直;
②经过空间一点一定可作一平面与两异面直线都平行;
③已知平面α、β,直线a、b,若α∩β=a,b⊥a,则b⊥α;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①在函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=
x+3
x-1
的图象关于点(-1,1)对称;
③关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
④已知命题p:对任意的x∈R,都有sinx≤1,则¬p是:存在x∈R,使得sinx>1;
⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,则角C等于30°或150°.
其中所有真命题的序号是
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①、已知函数y=f(x).(x∈R),则y=f(x-1)的图象与y=f(1-x)的图象关于直线x=1对称;
②、设函数f(x)=cos(x+φ),则“f(x)为偶函数”的充要条件是“f'(0)=0”;
③、等比数列{an}的前n项和为Sn,则“公比q>0”是“数列{Sn}单增”的充要条件;
④、实数x,y,则“
x-y≥0
y≥0
x+y≤2
”是“|2y-x|≤2”的充分不必要条件.
其中真命题有
①②④
①②④
(写出你认为正确的所有真命题的序号).

查看答案和解析>>

同步练习册答案