·ÖÎö£º£¨1£©¸ù¾ÝÌâÒâ-£¨x+1£©
2+a£¨x+1£©£¾2£¨-
2+ax£©¶ÔÒ»ÇÐ[3£¬+¡Þ£©ºã³ÉÁ¢£¬×ª»¯Îªa
£¼=
=£¨x-1£©
-£¬ÀûÓûù±¾²»µÈʽÇó½â¼´¿É£®
£¨2£©·ÖÀàÌÖÂÛfµÃ³öf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬m£¾0ÇÒm
n•2
n-n£¾m
n-1•2
n-£¨n-1£©£¬¼´m¡Ý2£®
£¨3£©µ±x¡Ê[4n£¬4n+4]£¬n¡ÊZʱ£¬f£¨x£©=mf£¨x-4£©=¡=m
nf£¨x-4n£©=m
n[£¨x-4n£©
2-4£¨x-4n£©]£¬·ÖÀàµÃ³ö£º-1¡Üm£¼0»ò0£¼m¡Ü1£®
½â´ð£º
½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºf£¨x+1£©£¾2f£¨x£©£¬
¼´-£¨x+1£©
2+a£¨x+1£©£¾2£¨-
2+ax£©¶ÔÒ»ÇÐ[3£¬+¡Þ£©ºã³ÉÁ¢£¬
£¨x-1£©a£¼x
2-2x-1£¬
¡ßx¡Ê[3£¬+¡Þ£©
¡àa
£¼=
=£¨x-1£©
-£¬
Áîx-1=t£¬Ôòt¡Ê[2£¬+¡Þ£©£¬
g£¨x£©=t
-ÔÚ[2£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àg£¨t£©
min=g£¨2£©=1£¬
¡àa£¼1£®
£¨2£©¡ßx¡Ê[0£¬1£©Ê±£¬f£¨x£©=2
x£¬
¡àµ±x¡Ê[1£¬2£©Ê±£¬f£¨x£©=mf£¨x-1£©=m•2
x-1£¬
µ±x¡Ê[n£¬n+1]ʱ£¬f£¨x£©=mf£¨x-1£©=m
2f£¨x-2£©=¡=m
nf£¨x-n£©=m
n•2
x-n£¬
¼´x¡Ê[n£¬n+1£©Ê±£¬f£¨x£©=m
n•2
x-n£¬n¡ÊN
*£¬
¡ßf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àm£¾0ÇÒm
n•2
n-n£¾m
n-1•2
n-£¨n-1£©£¬¼´m¡Ý2£®
£¨3£©ÎÊÌ⣨¢ñ£©¡ßµ±x¡Ê[0£¬4]ʱ£¬y¡Ê[-4£¬0]£¬ÇÒÓÐf£¨x+4£©=mf£¨x£©£¬
¡àµ±x¡Ê[4n£¬4n+4]£¬n¡ÊZʱ£¬
f£¨x£©=mf£¨x-4£©=¡=m
nf£¨x-4n£©=m
n[£¨x-4n£©
2-4£¨x-4n£©]£¬
µ±0£¼m¡Ü1ʱ£¬f£¨x£©¡Ê[-4£¬0]£»
µ±-1£¼m£¼0ʱ£¬f£¨x£©¡Ê[-4£¬-4m]£»
µ±m=-1ʱ£¬f£¨x£©¡Ê[-4£¬4]£»
µ±m£¾1ʱ£¬f£¨x£©¡Ê£¨-¡Þ£¬0£©£»
µ±m£¼-1ʱ£¬f£¨x£©¡Ê£¨-¡Þ£¬+¡Þ£©£»
×ÛÉÏ¿ÉÖª£º-1¡Üm£¼0»ò0£¼m¡Ü1£®
ÎÊÌ⣨¢ò£©£ºÓÉÒÑÖª£¬ÓÐf£¨x+T£©=T•f£¨x£©¶ÔÒ»ÇÐʵÊýxºã³ÉÁ¢£¬
¼´cosk£¨x+T£©=Tcoskx¶ÔÒ»ÇÐʵÊýºã³ÉÁ¢£¬
µ±k=0ʱ£¬T=1£»
µ±k¡Ù0ʱ£¬¡ßx¡ÊR£¬¡àkx¡ÊR£¬kx+kT¡ÊR£¬ÓÚÊÇcoskx¡Ê[-1£¬1]£¬
ÓÖ¡ßcos£¨kx+kT£©¡Ê[-1£¬1]£¬
¹ÊҪʹcosk£¨x+T£©=Tcoskxºã³ÉÁ¢£¬Ö»ÓÐT=¡À1£¬
µ±T=1ʱ£¬cos£¨kx-k£©=coskx µÃµ½ k=2n¦Ð£¬n¡ÊÇÒn¡Ù0£»
µ±T=-1ʱ£¬cos£¨kx-k£©=-coskx µÃµ½-k=2n¦Ð+¦Ð£¬
¼´k=£¨2n+1£©¦Ð£¬n¡ÊZ£»
×ÛÉÏ¿ÉÖª£ºµ±T=1ʱ£¬k=2n¦Ð£¬n¡ÊZ£»
µ±T=-1ʱ£¬K=£¨2n+1£©¦Ð£¬n¡ÊZ£®