精英家教网 > 高中数学 > 题目详情

函数数学公式在x=-1处取到极值,那么实数a的值为


  1. A.
    -2
  2. B.
    2
  3. C.
    1
  4. D.
    以上都不对
D
分析:由函数在x=-1处取到极值,故导函数f′(x)=x2+2ax+a在x=-1取到0,由此求出参数的值,再代入到导数中验证,所求出的参数的值是否符合题意.
解答:∵函数
∴f′(x)=x2+2ax+a
∵f′(-1)=0,即1-2a+a=0
∴a=1
但此时f′(x)=x2+2x+1=(x+1)2≥0,函数无极值,
∴x=-1不是极值点,求不出符合条件的参数a的值,
故应选D
点评:本题的考点是利用导数研究函数的极值,考查函数的极值存在时求参数的值,在导数的运用中,利用极值为0处导数为0建立参数求方程,这是导数的一个重要的运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年龙岩一中模拟文)(14分)

已知函数在x=1处取到极值 

(Ⅰ)求a,b满足的关系式(用a表示b)

(Ⅱ)解关于x的不等式

(Ⅲ)问当时,给定定义域为D=[0,1]时,函数是否满足对任意的

都有.如果是,请给出证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年龙岩一中模拟文)(14分)

已知函数在x=1处取到极值 

(Ⅰ)求a,b满足的关系式(用a表示b)

(Ⅱ)解关于x的不等式

(Ⅲ)问当时,给定定义域为D=[0,1]时,函数是否满足对任意的

都有.如果是,请给出证明;如果不是,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省吉林市高三(下)期中数学试卷(理科)(解析版) 题型:解答题

已知函数在x=1处取到极值2
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=ax-lnx.若对任意的,总存在唯一的,使得g(x2)=f(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷1(理科)(解析版) 题型:解答题

已知函数在x=1处取到极值2
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=ax-lnx.若对任意的,总存在唯一的,使得g(x2)=f(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省吉安市新干二中高三(下)第一次夜模数学试卷(文科)(解析版) 题型:解答题

已知函数在x=1处取到极值2.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数.若对任意的x1∈R,总存在x2∈[1,e],使得,求实数a的取值范围.

查看答案和解析>>

同步练习册答案