精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx,g(x)=ex
(1)若函数φ(x)=-x+f(-x),当x∈[-e,0)时,求φ(x)的值域.
(2)设直线l为函数f(x)的图象上一点A(x0,f(x0))处切线.证明:在区间(1,+∞)上存在唯一的x0使得直线l与曲线y=g(x)相切.
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)求出原函数的导函数,由x的范围得到导函数的符号,进一步得到原函数的单调性,从而求得函数的值域;
(2):由f(x)=
1
x
,求得切线l的方程y=
1
x0
x+lnx0-1
,设直线l与曲线y=g(x)相切于点(x1ex1),由ex1=
1
x0
说明l也为函数y=g(x)的切线,然后证明在区间(1,+∞)上x0存在且唯一即可.
解答: (1)解:当x∈[-e,0)时,φ(x)=-x+f(-x),
φ(x)=-1+
1
x
=
1-x
x

∵x∈[-e,0),φ(x)=-1+
1
x
=
1-x
x
<0,
∴φ(x)在[-e,0)上单调递减,
∴φ(x)∈(-∞,e+1];
(2)证明:∵f(x)=
1
x

f(x0)=
1
x0

∴切线l的方程y-lnx0=
1
x0
(x-x0)

y=
1
x0
x+lnx0-1
  ①,
设直线l与曲线y=g(x)相切于点(x1ex1)
∵g′(x)=ex
ex1=
1
x0
,则x1=-lnx0
∴直线l也为y-
1
x0
=
1
x0
(x+lnx0)

y=
1
x0
x+
lnx0
x0
+
1
x0
  ②,
由①②得,lnx0-1=
lnx0
x0
+
1
x0

lnx0=
x0+1
x0-1

下面证明在区间(1,+∞)上x0存在且唯一.
φ(x)=
1
x
+
2
(x-1)2
=
x2+1
x(x-1)2

∵x>0且x≠1,
∴φ′(x)>0.
∴函数φ(x)的单调递增区间为(0,1),(1,+∞),
可知,φ(x)=lnx-
x+1
x-1
在区间(1,+∞)上递增.
φ(e)=lne-
e+1
e-1
=
-2
e-1
<0,φ(e2)=lne2-
e2+1
e2-1
=
e2-3
e2-1
>0

结合零点存在性定理,说明方程φ(x)=0必在区间(e,e2)上有唯一的根,这个根就是所求的唯一x0
故结论成立.
点评:本题考查了利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,考查了存在性和唯一性的证明问题,是压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l经过两条直线2x+y-8=0和x-2y+1=0的交点.
(1)若直线l平行于直线3x-2y+4=0,求直线l的方程;
(2)若直线l垂直于直线4x-3y-7=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为[a,b],且f(a)=f(b),对于定义域内的任意实数x1,x2(x1≠x2)都有|f(x1)-f(x2)|<|x1-x2|
(1)设S=(x+y-3)2+(1-x)2+(6-2y-x)2,当且仅当x=a,y=b时,S取得最小值,求a,b的值;
(2)在(1)的条件下,证明:对任意x1,x2∈[a,b],有|f(x1)-f(x2)|<
5
6
成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

边长为2的正方形ABCD中,E∈AB,F∈BC
(1)如果E、F分别为AB、BC中点,分别将△AED、△DCF、△BEF沿ED、DF、FE折起,使A、B、C重合于点P.证明:在折叠过程中,A点始终在某个圆上,并指出圆心和半径.
(2)如果F为BC的中点,E是线段AB上的动点,沿DE、DF将△AED、△DCF折起,使A、C重合于点P,求三棱锥P-DEF体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是各条棱长均为2的正四面体的三视图,则正视图三角形的面积为(  )
A、
3
B、
2
3
6
C、2
3
D、
4
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)左右顶点,B(2,0)过椭圆C的右焦点F的直线交椭圆与M,N,交直线x=4于点P,且直线PA,PF,PB的斜率成等差数列,T(
1
4
,0)点是定点
(1)求椭圆C的方程;
(2)求三角形MNT面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A是不等式组
x-3y+1≤0
x+y-3≤0
x≥1
所表示的平面区域内的一个动点,点B(-2,1),O为坐标原点,则|
OA
+
OB
|
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx-x2+ax(a∈R).
(Ⅰ) 求函数f(x)的单调区间;
(Ⅱ) 设g(x)=
x
ex
,若对于任意给定的x0∈(0,e],方程f(x)+
1
e
=g(x0)
在(0,e]内有两个不同的实数根,求a的取值范围.(其中e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点作垂直x轴的直线与椭圆有四个交点,这四个交点恰好为正方形的四个顶点,则椭圆的离心率为(  )
A、
5
+1
2
B、
5
-1
2
C、
3
-1
2
D、
3
+1
2

查看答案和解析>>

同步练习册答案