精英家教网 > 高中数学 > 题目详情
21、如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.
分析:本题考察的知识点是圆周角定理,要证明:∠OBP+∠AQE=45°,我们可以连接AB,然后根据圆周角定理,得到∠OBP+∠AQE=∠OBP+∠ABP=∠AQE,进行得到结论.
解答:证明:连接AB,
则∠AQE=∠ABP,
而OA=OB,
所以∠ABO=45°
所以∠OBP+∠AQE
=∠OBP+∠ABP
=∠AQE
=45°
点评:根据求证的结论,使用分析推敲证明过程中所需要的条件,进而分析添加辅助线的方法,是平面几何证明必须掌握的技能,大家一定要熟练掌握,而在(2)中根据已知条件分析转化的方向也是解题的主要思想.解决就是寻找解题的思路,由已知出发,找寻转化方向和从结论出发寻找转化方向要结合在一起使用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知
OA
OB
是不共线向量,
AP
=t
AB
(t∈R),试用
OA
OB
表示
OP

查看答案和解析>>

科目:高中数学 来源:盐城一模 题型:解答题

如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南通中学高三(上)期中数学试卷(理科)(解析版) 题型:解答题

如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省盐城市高考数学一模试卷(解析版) 题型:解答题

如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点E,求证:∠OBP+∠AQE=45°.

查看答案和解析>>

同步练习册答案