精英家教网 > 高中数学 > 题目详情
如图,梯形ABCD中,ADBC,∠ABC=
π
2
,AB=a,AD=3a,∠ADC=arcsin
5
5
,PA⊥面ABCD,PA=a.求:
(1)二面角P-CD-A的大小(用反三角函数表示);
(2)点A到平面PBC的距离.
(1)作AE⊥直线CD于E连PE.
由PA⊥面ABCD据三垂线定理知PE⊥CD.∴∠PEA是二面角P-CD-A的平面角.
在Rt△AED中,AD=3a,∠ADE=arcsin
5
5
.∴AE=AD•sin∠ADE=
3
5
5
a
在Rt△PAE,中tan∠PEA=
PA
AE
=
5
3
.∴∠PEA=arctg
5
3

即二面角P-CD-A的大小为arctg
5
3

(2)作AH⊥PB于H.
由PA⊥面ABCD,∵BC⊥AB,∴PB⊥BC.
又PB∩AB=B,∴BC⊥面PAB.
∴BC⊥AH.
∴AH⊥面PBC,AH的长为点A到面PBC的距离.
在等腰Rt△PAB中,AH=
2
2
a.
∴点A到平面PBC的距离是
2
2
a.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且

(1)求证:平面平面;
(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

二面角α-EF-β的大小为120°,A是它内部的一点AB⊥α,AC⊥β,B,C分别为垂足.
(1)求证:平面ABC⊥β;
(2)当AB=4cm,AC=6cm,求BC的长及A到EF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β的大小为60°,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则CD=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直二面角α-l-β的棱l上有一点A,在平面α,β内各有一条射线AB,AC与l成45°,AB?α,AC?β,则∠BAC=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(Ⅰ)求证:平面PAC⊥平面PBC;
(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,三棱柱ABC-A′B′C′的所有棱长都相等,侧棱与底面垂直,M是侧棱BB′的中点,则二面角M-AC-B的大小为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱ABC-A1B1C1中,AB⊥BC,E为棱CC1的中点,已知AB=
2
,BB1=2,BC=1.
(1)证明:BE是异面直线AB与EB1的公垂线;
(2)求二面角A-EB1-A1的大小;
(3)求点A1到面AEB1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条直线m,n,两个平面α,β.给出下面四个命题:
①m∥n,m⊥α⇒n⊥α;
②α∥β,m?α,n?β⇒m∥n;
③m∥n,m∥α⇒n∥α;
④α∥β,m∥n,m⊥α⇒n⊥β.
其中正确命题的序号是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

同步练习册答案