精英家教网 > 高中数学 > 题目详情
二面角α-EF-β的大小为120°,A是它内部的一点AB⊥α,AC⊥β,B,C分别为垂足.
(1)求证:平面ABC⊥β;
(2)当AB=4cm,AC=6cm,求BC的长及A到EF的距离.
(1)∵AB⊥α,EF?α,∴EF⊥AB,
同理EF⊥AC,AB,AC是两条相交直线,
∴EF⊥平面ABC,
∵EF?β,∴平面ABC⊥平面β.
(2)设平面ABC与EF交于点D,连接BD,CD,则BD,CD?平面ABC,∵EF⊥平面ABC,∴EF⊥BC,EF⊥DC,∠BDC是二面角α-EF-β的平面角,∠BCD=120°,A,B,C,D在同一平面内,且∠ABD=∠ACD=90°,
∴∠BAC=60°,当AB=4cm,AC=6cm时,
BC=
AB2+AC2-2AB×AC×cos60°

又∵A,B,C,D共圆,∵AD是直径.∵EF⊥平面ABC,AD?平面ABC,
∴AD⊥EF,即AD是A到EF的距离,由正弦定理,得AD=
BC
sinA
=
4
21
3
(cm)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

将等边三角形ABC沿中线AD对折使BD⊥AC,那么AB与平面ACD所成的角是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D,D1分别为棱BC,B1C1的中点.
(1)求证:直线A1D1平面ADC1
(2)求证:平面ADC1⊥平面BCC1B1
(3)设底面边长为2,侧棱长为4,求二面角C1-AD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,A(-2,3),B(3,-2),沿x轴把平面直角坐标系折成120°的二面角后,则线段AB的长度为(  )
A.
2
B.2
11
C.3
2
D.4
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形ABCD所在平面与矩形ACEF所在平面垂直,其中AB=
2
,AF=1,M是EF中点.
(1)求证:AM平面BDE;
(2)求二面角A-BD-F的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面ABCD是菱形,SA=SD=
39
AD=2
3
,且S-AD-B大小为120°,∠DAB=60°.
(1)求异面直线SA与BD所成角的正切值;
(2)求证:二面角A-SD-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正方形ABCD沿其对角线AC将△ADC折起,设AD与平面ABC所成的角为β,当β取最大值时,二面角B-AC-D的大小为(  )
A.120°B.90°C.60°D.45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M是A1B的中点.
(Ⅰ)在线段B1C1上是否存在一点N,使得MN⊥平面A1BC?若存在,找出点N的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面A1AB和平面A1BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,梯形ABCD中,ADBC,∠ABC=
π
2
,AB=a,AD=3a,∠ADC=arcsin
5
5
,PA⊥面ABCD,PA=a.求:
(1)二面角P-CD-A的大小(用反三角函数表示);
(2)点A到平面PBC的距离.

查看答案和解析>>

同步练习册答案