精英家教网 > 高中数学 > 题目详情
如图,正方形ABCD所在平面与矩形ACEF所在平面垂直,其中AB=
2
,AF=1,M是EF中点.
(1)求证:AM平面BDE;
(2)求二面角A-BD-F的大小.
(1)证:∵M为中点
∴EM
.
.
OA,故EMAO为平行四边形,AMOE
∴AM平面BDE(6分)
(2)∵FA⊥AC,平面FACE⊥平面ABCD
∴FA⊥平面ABCD
∵AO⊥BD∴FO⊥BD∴∠FOA为二面角A-BD-F的平面角
在Rt△FOA中,OA=1,AF=1
∴∠FOA=45°
即二面角A-BD-F的大小为45°(13分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知△ABC和△DBC所在的平面互相垂直,且AB=BC=BD,∠CBA=∠DBC=120°,则AB与平面ADC所成角的正弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=
2

(Ⅰ)求证:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角梯形ABCD中,∠D=∠BAD=90°,AD=DC=
1
2
AB=1,将△ADC沿AC折起,使D到D′.若二面角D′-AC-B为60°,则三棱锥D′-ABC的体积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设正方体ABC-A1B1C1D1的棱长为2,动点E,F在棱A1B1上,动点P、Q分别在棱AD、CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z>0),则下列结论中错误的是(  )
A.EF平面DPQ
B.二面角P-EF-Q所成角的最大值为
π
4
C.三棱锥P-EFQ的体积与y的变化有关,与x、z的变化无关
D.异面直线EQ和AD1所成角的大小与x、y的变化无关

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

二面角α-EF-β的大小为120°,A是它内部的一点AB⊥α,AC⊥β,B,C分别为垂足.
(1)求证:平面ABC⊥β;
(2)当AB=4cm,AC=6cm,求BC的长及A到EF的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P-ABCD的底面为菱形,∠BCD=60°,PD⊥AD.点E是BC边上的中点.
(1)求证:AD⊥面PDE;
(2)若二面角P-AD-C的大小等于60°,且AB=4,PD=
8
3
3
;①求VP-ABED;②求二面角P-AB-C大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱柱ABCD-A1B1C1D1中,AA1=
2
,AB=1
,E是DD1的中点.
(1)求证:AC⊥B1D;
(2)求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(Ⅰ)求证:平面PAC⊥平面PBC;
(Ⅱ)若AB=2,AC=1,PA=1,求证:二面角C-PB-A的余弦值.

查看答案和解析>>

同步练习册答案