【题目】设函数f(x)=x3﹣3ax+b.
(1)若曲线y=f(x)在点(2,f(x))处与直线y=8相切,求a,b的值.
(2)在(1)的条件下求函数f(x)的单调区间与极值点.
【答案】
(1)解:f′(x)=3x2﹣3a,
∵曲线y=f(x)在点(2,f(2))处与直线y=8相切,
∴ ,∴ ,∴
(2)解:∵f′(x)=3x2﹣12,
由f′(x)=0,解得:x=±2,
令f′(x)>0,解得:x>2或x<﹣2,
令f′(x)<0,解得:﹣2<x<2,
故f(x)在(﹣∞,﹣2)递增,在(﹣2,2)递减,在(2,+∞)递增;
∴此时x=﹣2是f(x)的极大值点,x=2是f(x)的极小值点
【解析】(1)根据导数的几何意义,可得关于a,b的方程组,解出即可;(2)首先求f′(x)=0的自变量的值,然后判断导数为0的点的两侧的导数是不是变号,根据导数的符号得到函数的单调区间以及极值点.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值)的相关知识才是答题的关键.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥 中,平面PAD⊥ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.
求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线方程为16x2﹣9y2=144.
(1)求该双曲线的实轴长、虚轴长、离心率;
(2)若抛物线C的顶点是该双曲线的中心,而焦点是其左顶点,求抛物线C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)对任意的x∈(﹣ , )满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是 . ① f(﹣ )<f(﹣ )
② f( )<f( )
③f(0)>2f( )
④f(0)> f( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=1,AA1=2,∠B1A1C1=90°,D为BB1的中点.
求证:AD⊥平面A1DC1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC所在平面外有一点P,D,E分别是PB与AB上的点,过D,E作平面平行于BC,试画出这个平面与其他各面的交线,并说明画法的依据.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着“全面二孩”政策推行,我市将迎来生育高峰.今年新春伊始,宜城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩”宝宝;市妇幼保健院共有30个猴宝宝降生,其中10个是“二孩”宝宝. (I)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询.
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(Ⅱ)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
附:
P(k2>k0) | 0.4 | 0.25 | 0.15 | 0.10 |
k0 | 0.708 | 1.323 | 2.072 | 2.706 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com